56 research outputs found

    A Hybrid Computational Intelligence based Technique for Automatic Cryptanalysis of Playfair Ciphers

    Get PDF
    The Playfair cipher is a symmetric key cryptosystem-based on encryption of digrams of letters. The cipher shows higher cryptanalytic complexity compared to mono-alphabetic cipher due to the use of 625 different letter-digrams in encryption instead of 26 letters from Roman alphabets. Population-based techniques like Genetic algorithm (GA) and Swarm intelligence (SI) are more suitable compared to the Brute force approach for cryptanalysis of cipher because of specific and unique structure of its Key Table. This work is an attempt to automate the process of cryptanalysis using hybrid computational intelligence. Multiple particle swarm optimization (MPSO) and GA-based hybrid technique (MPSO-GA) have been proposed and applied in solving Playfair ciphers. The authors have attempted to find the solution key applied in generating Playfair crypts by using the proposed hybrid technique to reduce the exhaustive search space. As per the computed results of the MPSO-GA technique, correct solution was obtained for the Playfair ciphers of 100 to 200 letters length. The proposed technique provided better results compared to either GA or PSO-based technique. Furthermore, the technique was also able to recover partial English text message for short Playfair ciphers of 80 to 120 characters length

    UNCOVERING PATTERNS IN COMPLEX DATA WITH RESERVOIR COMPUTING AND NETWORK ANALYTICS: A DYNAMICAL SYSTEMS APPROACH

    Get PDF
    In this thesis, we explore methods of uncovering underlying patterns in complex data, and making predictions, through machine learning and network science. With the availability of more data, machine learning for data analysis has advanced rapidly. However, there is a general lack of approaches that might allow us to 'open the black box'. In the machine learning part of this thesis, we primarily use an architecture called Reservoir Computing for time-series prediction and image classification, while exploring how information is encoded in the reservoir dynamics. First, we investigate the ways in which a Reservoir Computer (RC) learns concepts such as 'similar' and 'different', and relationships such as 'blurring', 'rotation' etc. between image pairs, and generalizes these concepts to different classes unseen during training. We observe that the high dimensional reservoir dynamics display different patterns for different relationships. This clustering allows RCs to perform significantly better in generalization with limited training compared with state-of-the-art pair-based convolutional/deep Siamese Neural Networks. Second, we demonstrate the utility of an RC in the separation of superimposed chaotic signals. We assume no knowledge of the dynamical equations that produce the signals, and require only that the training data consist of finite time samples of the component signals. We find that our method significantly outperforms the optimal linear solution to the separation problem, the Wiener filter. To understand how representations of signals are encoded in an RC during learning, we study its dynamical properties when trained to predict chaotic Lorenz signals. We do so by using a novel, mathematical fixed-point-finding technique called directional fibers. We find that, after training, the high dimensional RC dynamics includes fixed points that map to the known Lorenz fixed points, but the RC also has spurious fixed points, which are relevant to how its predictions break down. While machine learning is a useful data processing tool, its success often relies on a useful representation of the system's information. In contrast, systems with a large numbers of interacting components may be better analyzed by modeling them as networks. While numerous advances in network science have helped us analyze such systems, tools that identify properties on networks modeling multi-variate time-evolving data (such as disease data) are limited. We close this gap by introducing a novel data-driven, network-based Trajectory Profile Clustering (TPC) algorithm for 1) identification of disease subtypes and 2) early prediction of subtype/disease progression patterns. TPC identifies subtypes by clustering patients with similar disease trajectory profiles derived from bipartite patient-variable networks. Applying TPC to a Parkinson’s dataset, we identify 3 distinct subtypes. Additionally, we show that TPC predicts disease subtype 4 years in advance with 74% accuracy

    Variational quantum architectures. Applications for noisy intermediate-scale quantum computers

    Get PDF
    [eng] Quantum algorithms showing promising speedups with respect to their classical counterparts already exist. However, noise limits the quantum circuit depth, making the practical implementation of many such quantum algorithms impossible nowadays. In this sense, variational quantum algorithms offer a new approach, reducing the requisites of quantum computational resources at the expense of classical optimization. Disciplines in which variational quantum algorithms may have practical applications include simulation of quantum systems, solving large systems of linear equations, combinatorial optimization, data compression, quantum state diagonalization, among others. This thesis studies different variational quantum algorithm applications. In Chapter 1, we introduce the main building blocks of variational quantum algorithms. In Chapter 2, we benchmark the seminal variational quantum eigensolver algorithm for condensed matter systems. In Chapter 3, we explore how the task of compressing quantum information is affected by data encoding in variational quantum circuits. In Chapter 4, we propose a novel variational quantum algorithm to compute the singular values of pure bipartite states. In Chapter 5, we develop a new variational quantum algorithm to solve linear systems of equations. Finally, in Chapter 6, we implement quantum generative adversarial networks for generative modeling tasks. The conclusions of this thesis are exposed in Chapter 7. Furthermore, supplementary material can be found in the appendices. Appendix A provides an introduction to Qibo, a framework for quantum simulation. Appendix B presents some results related to the Solovay-Kitaev theorem. Extra results from Chapter 5 and Chapter 6 can be found in Appendix C and Appendix D, respectively.[spa] Algoritmos cuánticos mostrando prometedoras ventajas respecto sus contrapartes clásicas ya existen. Sin embargo, el ruido limita la profundidad de los circuitos cuánticos, lo que hace imposible la aplicación práctica de muchos de estos algoritmos cuánticos en la actualidad. En este sentido, los algoritmos cuánticos variacionales ofrecen un nuevo enfoque, reduciendo los requisitos de recursos computacionales cuánticos a expensas de optimización clásica. Disciplinas en las que los algoritmos cuánticos variacionales pueden tener aplicaciones prácticas incluyen la simulación de sistemas cuánticos, la resolución de grandes sistemas de ecuaciones lineales, la optimización combinatoria, la compresión de datos y la diagonalización de estados cuánticos, entre otras. Esta tesis estudia diferentes aplicaciones de los algoritmos cuánticos variacionales. En el Capítulo 1, presentamos los principales bloques de construcción de los algoritmos cuánticos variacionales. En el Capítulo 2, evaluamos el algoritmo “variational quantum eigensolver” para sistemas de materia condensada. En el capítulo 3, exploramos cómo la tarea de comprimir la información cuántica se ve afectada por la codificación de datos en los circuitos cuánticos variacionales. En el Capítulo 4, proponemos un novedoso algoritmo cuántico variacional para calcular los valores singulares de los estados bipartitos puros. En el Capítulo 5, desarrollamos un nuevo algoritmo cuántico variacional para resolver sistemas lineales de ecuaciones. Finalmente, en el Capítulo 6, implementamos redes generativas adversarias cuánticas para tareas de modelado generativo. Las conclusiones de esta tesis se exponen en el Capítulo 7. Además, se puede encontrar material complementario en los apéndices. El Apéndice A ofrece una introducción a Qibo, un software para la simulación cuántica. El Apéndice B presenta algunos resultados relacionados con el teorema de Solovay-Kitaev. En el Apéndice C y en el Apéndice D se pueden encontrar resultados adicionales del Capítulo 5 y del Capítulo 6, respectivamente

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Improving the sustainability of coal SC in both developed and developing countries by incorporating extended exergy accounting and different carbon reduction policies

    Get PDF
    In the age of Industry 4.0 and global warming, it is inevitable for decision-makers to change the way they view the coal supply chain (SC). In nature, energy is the currency, and nature is the source of energy for humankind. Coal is one of the most important sources of energy which provides much-needed electricity, as well as steel and cement production. This manuscript-based PhD thesis examines the coal SC network as well as the four carbon reduction strategies and plans to develop a comprehensive model for sustainable design. Thus, the Extended Exergy Accounting (EEA) method is incorporated into a coal SC under economic order quantity (EOQ) and economic production quantity (EPQs) in an uncertain environment. Using a real case study in coal SC in Iran, four carbon reduction policies such as carbon tax (Chapter 5), carbon trade (Chapter 6), carbon cap (Chapter 7), and carbon offset (Chapter 8) are examined. Additionally, all carbon policies are compared for sustainable performance of coal SCs in some developed and developing countries (the USA, China, India, Germany, Canada, Australia, etc.) with the world's most significant coal consumption. The objective function of the four optimization models under each carbon policy is to minimize the total exergy (in Joules as opposed to Dollars/Euros) of the coal SC in each country. The models have been solved using three recent metaheuristic algorithms, including Ant lion optimizer (ALO), Lion optimization algorithm (LOA), and Whale optimization algorithm (WOA), as well as three popular ones, such as Genetic algorithm (GA), Ant colony optimization (ACO), and Simulated annealing (SA), are suggested to determine a near-optimal solution to an exergy fuzzy nonlinear integer-programming (EFNIP). Moreover, the proposed metaheuristic algorithms are validated by using an exact method (by GAMS software) in small-size test problems. Finally, through a sensitivity analysis, this dissertation compares the effects of applying different percentages of exergy parameters (capital, labor, and environmental remediation) to coal SC models in each country. Using this approach, we can determine the best carbon reduction policy and exergy percentage that leads to the most sustainable performance (the lowest total exergy per Joule). The findings of this study may enhance the related research of sustainability assessment of SC as well as assist coal enterprises in making logical and measurable decisions

    Applied Methuerstic computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    MOCAST 2021

    Get PDF
    The 10th International Conference on Modern Circuit and System Technologies on Electronics and Communications (MOCAST 2021) will take place in Thessaloniki, Greece, from July 5th to July 7th, 2021. The MOCAST technical program includes all aspects of circuit and system technologies, from modeling to design, verification, implementation, and application. This Special Issue presents extended versions of top-ranking papers in the conference. The topics of MOCAST include:Analog/RF and mixed signal circuits;Digital circuits and systems design;Nonlinear circuits and systems;Device and circuit modeling;High-performance embedded systems;Systems and applications;Sensors and systems;Machine learning and AI applications;Communication; Network systems;Power management;Imagers, MEMS, medical, and displays;Radiation front ends (nuclear and space application);Education in circuits, systems, and communications

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma
    corecore