547 research outputs found

    Size discrimination of transient signals

    No full text
    The importance of spectral cues in size discrimination of transient signals was investigated, and a model for this ability, tAIM, was created based on the biological principles of human hearing. A psychophysics experiment involving 40 participants found that the most important cue for size discrimination of transient signals, created by striking different sizes of polystyrene spheres, was similar to that of speakers listening to vowels – the relative positions of the resonances between comparison signals. It was found possible to scale the sphere signals in order to confuse listeners into believing the signal source was a different size, but two methods of scaling signals in order to sound the same size as another proved inconclusive, suggesting the possibility that transient signals cannot be scaled in a linear fashion as has been shown possible for vowels. Filtering the signals in a number of different ways found that the most important cue in size discrimination of transient signals is the difference between the most prominent resonances available in the spectra of the comparison signals. A model of the auditory system using the dynamic compressive Gammachirp filterbank, and based on the well-known AIM, was created to produce auditory images of transient signals that could be normalised for size. Transient-AIM, or tAIM used the Mellin transform to produce images that showed size normalisation was possible due to the spectral envelope similarities across the sizes of the spheres. tAIM was extended to carry out size discrimination of the spheres using the information contained within the Mellin images. There was a systematic association between Mellin phase and size of objects of various shapes, which suggests that tAIM is able to infer object size from sound recordings of objects being struck

    Aspects of room acoustics, vision and motion in the human auditory perception of space

    Get PDF
    The human sense of hearing contributes to the awareness of where sound-generating objects are located in space and of the environment in which the hearing individual is located. This auditory perception of space interacts in complex ways with our other senses, can be both disrupted and enhanced by sound reflections, and includes safety mechanisms which have evolved to protect our lives, but can also mislead us. This dissertation explores some selected topics from this wide subject area, mostly by testing the abilities and subjective judgments of human listeners in virtual environments. Reverberation is the gradually decaying persistence of sounds in an enclosed space which results from repeated sound reflections at surfaces. The first experiment (Chapter 2) compared how strongly people perceived reverberation in different visual situations: when they could see the room and the source which generated the sound; when they could see some room and some sound source, but the image did not match what they heard; and when they could not see anything at all. There were no indications that the visual image had any influence on this aspect of room-acoustical perception. The potential benefits of motion for judging the distance of sound sources were the focus of the second study (Chapter 3), which consists of two parts. In the first part, loudspeakers were placed at different depths in front of sitting listeners who, on command, had to either remain still or move their upper bodies sideways. This experiment demonstrated that humans can exploit motion parallax (the effect that closer objects appear faster to a moving observer than farther objects) with their ears and not just with their eyes. The second part combined a virtualisation of such sound sources with a motion platform to show that the listeners’ interpretation of this auditory motion parallax was better when they performed this lateral movement by themselves, rather than when they were moved by the apparatus or were not actually in motion at all. Two more experiments were concerned with the perception of sounds which are perceived as becoming louder over time. These have been called “looming”, as the source of such a sound might be on a collision course. One of the studies (Chapter 4) showed that western diamondback rattlesnakes (Crotalus atrox) increase the vibration speed of their rattle in response to the approach of a threatening object. It also demonstrated that human listeners perceive (virtual) snakes which engage in this behaviour as especially close, causing them to keep a greater margin of safety than they would otherwise. The other study (section 5.6) was concerned with the well-known looming bias of the sound localisation system, a phenomenon which leads to a sometimes exaggerated, sometimes more accurate perception of approaching compared to receding sounds. It attempted to find out whether this bias is affected by whether listeners hear such sounds in a virtual enclosed space or in an environment with no sound reflections. While the results were inconclusive, this experiment is noteworthy as a proof of concept: It was the first study to make use of a new real-time room-acoustical simulation system, liveRAZR, which was developed as part of this dissertation (Chapter 5). Finally, while humans have been more often studied for their unique abilities to communicate with each other and bats for their extraordinary capacity to locate objects by sound, this dissertation turns this setting of priorities on its head with the last paper (Chapter 6): Based on recordings of six pale spear-nosed bats (Phyllostomus discolor), it is a survey of the identifiably distinct vocalisations observed in their social interactions, along with a description of the different situations in which they typically occur.Das menschliche Gehör trĂ€gt zum Bewusstsein dafĂŒr bei, wo sich schallerzeugende Objekte im Raum befinden und wie die Umgebung beschaffen ist, in der sich eine Person aufhĂ€lt. Diese auditorische Raumwahrnehmung interagiert auf komplexe Art und Weise mit unseren anderen Sinnen, kann von Schallreflektionen sowohl profitieren als auch durch sie behindert werden, und besitzt Mechanismen welche evolutionĂ€r entstanden sind, um unser Leben zu schĂŒtzen, uns aber auch irrefĂŒhren können. Diese Dissertation befasst sich mit einigen ausgewĂ€hlten Themen aus diesem weiten Feld und stĂŒtzt sich dabei meist auf die Testung von WahrnehmungsfĂ€higkeiten und subjektiver EinschĂ€tzungen menschlicher Hörer/-innen in virtueller RealitĂ€t. Beim ersten Experiment (Kapitel 2) handelte es sich um einen Vergleich zwischen der Wahrnehmung von Nachhall, dem durch wiederholte Reflexionen an OberflĂ€chen hervorgerufenen, sukzessiv abschwellenden Verbleib von Schall in einem umschlossenen Raum, unter verschiedenen visuellen UmstĂ€nden: wenn die Versuchsperson den Raum und die Schallquelle sehen konnte; wenn sie irgendeinen Raum und irgendeine Schallquelle sehen konnte, dieses Bild aber vom Schalleindruck abwich; und wenn sie gar kein Bild sehen konnte. Dieser Versuch konnte keinen Einfluss eines Seheindrucks auf diesen Aspekt der raumakustischen Wahrnehmung zu Tage fördern. Mögliche Vorteile von Bewegung fĂŒr die EinschĂ€tzung der Entfernung von Schallquellen waren der Schwerpunkt der zweiten Studie (Kapitel 3). Diese bestand aus zwei Teilen, wovon der erste zeigte, dass Hörer/-innen, die ihren Oberkörper relativ zu zwei in unterschiedlichen AbstĂ€nden vor ihnen aufgestellten Lautsprechern auf Kommando entweder stillhalten oder seitlich bewegen mussten, im letzteren Falle von der Bewegungsparallaxe (dem Effekt, dass sich der nĂ€here Lautsprecher relativ zum sich bewegenden Körper schneller bewegte als der weiter entfernte) profitieren konnten. Der zweite Teil kombinierte eine Simulation solcher Schallquellen mit einer Bewegungsplattform, wodurch gezeigt werden konnte, dass die bewusste Eigenbewegung fĂŒr die Versuchspersonen hilfreicher war, als durch die Plattform bewegt zu werden oder gar nicht wirklich in Bewegung zu sein. Zwei weitere Versuche gingen auf die Wahrnehmung von Schallen ein, deren Ursprungsort sich nach und nach nĂ€her an den/die Hörer/-in heranbewegte. Derartige Schalle werden auch als „looming“ („anbahnend“) bezeichnet, da eine solche AnnĂ€herung bei bedrohlichen Signalen nichts Gutes ahnen lĂ€sst. Einer dieser Versuche (Kapitel 4) zeigte zunĂ€chst, dass Texas-Klapperschlangen (Crotalus atrox) die Vibrationsgeschwindigkeit der Schwanzrassel steigern, wenn sich ein bedrohliches Objekt ihnen nĂ€hert. Menschliche Hörer/-innen nahmen (virtuelle) Schlangen, die dieses Verhalten aufweisen, als besonders nahe wahr und hielten einen grĂ¶ĂŸeren Sicherheitsabstand ein, als sie es sonst tun wĂŒrden. Der andere Versuch (Abschnitt 5.6) versuchte festzustellen, ob die wohlbekannte Neigung unserer Schallwahrnehmung, nĂ€herkommende Schalle manchmal ĂŒbertrieben und manchmal genauer einzuschĂ€tzen als sich entfernende, durch Schallreflektionen beeinflusst werden kann. Diese Ergebnisse waren unschlĂŒssig, jedoch bestand die Besonderheit dieses Versuchs darin, dass er erstmals ein neues Echtzeitsystem zur Raumakustiksimulation (liveRAZR) nutzte, welches als Teil dieser Dissertation entwickelt wurde (Kapitel 5). Abschließend (Kapitel 6) wird die Schwerpunktsetzung auf den Kopf gestellt, nach der Menschen öfter auf ihre einmaligen FĂ€higkeiten zur Kommunikation miteinander untersucht werden und FledermĂ€use öfter auf ihre außergewöhnliches Geschick, Objekte durch Schall zu orten: Anhand von Aufnahmen von sechs Kleinen Lanzennasen (Phyllostomus discolor) fasst das Kapitel die klar voneinander unterscheidbaren Laute zusammen, die diese Tiere im sozialen Umgang miteinander produzieren, und beschreibt, in welchen Situationen diese Lauttypen typischerweise auftreten

    One Tone, Two Ears, Three Dimensions: An investigation of qualitative echolocation strategies in synthetic bats and real robots

    Get PDF
    Institute of Perception, Action and BehaviourThe aim of the work reported in this thesis is to investigate a methodology for studying perception by building and testing robotic models of animal sensory mechanisms. Much of Artificial Intelligence studies agent perception by exploring architectures for linking (often abstract) sensors and motors so as to give rise to particular behaviour. By contrast, this work proposes that perceptual investigations should begin with a characterisation of the underlying physical laws which govern the specific interaction of a sensor (or actuator) with its environment throughout the execution of a task. Moreover, it demonstrates that, through an understanding of task-physics, problems for which architectural solutions or explanations are often proposed may be solved more simply at the sensory interface - thereby minimising subsequent computation. This approach is applied to an investigation of the acoustical cues that may be exploited by several species of tone emitting insectivorous bats (species in the families Rhinolophidae and Hipposideridae) which localise prey using systematic pinnae scanning movements. From consideration of aspects of the sound filtering performed by the external and inner ear or these bats, three target localisation mechanisms are hypothesised and tested aboard a 6 degree-of-freedom, binaural, robotic echolocation system.In the first case, it is supposed that echolocators with narrow-band call structures use pinna movement to alter the directional sensitivity of their perceptual systems in the same whay that broad-band emitting bats rely on pinnae morphology to alter acoustic directionality at different frequencies.Scanning receivers also create dynamic cues - in the form of frequency and amplitude modulations - which very systematically with target angle. The second hypothesis investigated involves the extraction of timing cues from amplitude modulated echo envelopes

    The role of sound offsets in auditory temporal processing and perception

    Get PDF
    Sound-offset responses are distinct to sound onsets in their underlying neural mechanisms, temporal processing pathways and roles in auditory perception following recent neurobiological studies. In this work, I investigate the role of sound offsets and the effect of reduced sensitivity to offsets on auditory perception in humans. The implications of a 'sound-offset deficit' for speech-in-noise perception are investigated, based on a mathematical model with biological significance and independent channels for onset and offset detection. Sound offsets are important in recognising, distinguishing and grouping sounds. They are also likely to play a role in perceiving consonants that lie in the troughs of amplitude fluctuations in speech. The offset influence on the discriminability of model outputs for 48 non-sense vowel-consonant-vowel (VCV) speech stimuli in varying levels of multi-talker babble noise (-12, -6, 0, 6, 12 dB SNR) was assessed, and led to predictions that correspond to known phonetic categories. This work therefore suggests that variability in the offset salience alone can explain the rank order of consonants most affected in noisy situations. A novel psychophysical test battery for offset sensitivity was devised and assessed, followed by a study to find an electrophysiological correlate. The findings suggest that individual differences in sound-offset sensitivity may be a factor contributing to inter-subject variation in speech-in-noise discrimination ability. The promising measures from these results can be used to test between-population differences in offset sensitivity, with more support for objective than psychophysical measures. In the electrophysiological study, offset responses in a duration discrimination paradigm were found to be modulated by attention compared to onset responses. Overall, this thesis shows for the first time that the onset-offset dichotomy in the auditory system, previously explored in physiological studies, is also evident in human studies for both simple and complex speech sounds

    Towards a bionic bat: A biomimetic investigation of active sensing, Doppler-shift estimation, and ear morphology design for mobile robots.

    Get PDF
    Institute of Perception, Action and BehaviourSo-called CF-FM bats are highly mobile creatures who emit long calls in which much of the energy is concentrated in a single frequency. These bats face sensor interpretation problems very similar to those of mobile robots provided with ultrasonic sensors, while navigating in cluttered environments. This dissertation presents biologically inspired engineering on the use of narrowband Sonar in mobile robotics. It replicates, using robotics as a modelling medium, how CF-FM bats process and use the constant frequency part of their emitted call for several tasks, aiming to improve the design and use of narrowband ultrasonic sensors for mobile robot navigation. The experimental platform for the work is RoBat, the biomimetic sonarhead designed by Peremans and Hallam, mounted on a commercial mobile platform as part of the work reported in this dissertation. System integration, including signal processing capabilities inspired by the bat’s auditory system and closed loop control of both sonarhead and mobile base movements, was designed and implemented. The result is a versatile tool for studying the relationship between environmental features, their acoustic correlates and the cues computable from them, in the context of both static, and dynamic real-time closed loop, behaviour. Two models of the signal processing performed by the bat’s cochlea were implemented, based on sets of bandpass filters followed by full-wave rectification and low-pass filtering. One filterbank uses Butterworth filters whose centre frequencies vary linearly across the set. The alternative filterbank uses gammatone filters, with centre frequencies varying non-linearly across the set. Two methods of estimating Doppler-shift from the return echoes after cochlear signal processing were implemented. The first was a simple energy-weighted average of filter centre frequencies. The second was a novel neural network-based technique. Each method was tested with each of the cochlear models, and evaluated in the context of several dynamic tasks in which RoBat was moved at different velocities towards stationary echo sources such as walls and posts. Overall, the performance of the linear filterbank was more consistent than the gammatone. The same applies to the ANN, with consistently better noise performance than the weighted average. The effect of multiple reflectors contained in a single echo was also analysed in terms of error in Doppler-shift estimation assuming a single wider reflector. Inspired by the Doppler-shift compensation and obstacle avoidance behaviours found in CF-FM bats, a Doppler-based controller suitable for collision detection and convoy navigation in robots was devised and implemented in RoBat. The performance of the controller is satisfactory despite low Doppler-shift resolution caused by lower velocity of the robot when compared to real bats. Barshan’s and Kuc’s 2D object localisation method was implemented and adapted to the geometry of RoBat’s sonarhead. Different TOF estimation methods were tested, the parabola fitting being the most accurate. Arc scanning, the ear movement technique to recover elevation cues proposed by Walker, and tested in simulation by her, Peremans and Hallam, was here implemented on RoBat, and integrated with Barshan’s and Kuc’s method in a preliminary narrowband 3D tracker. Finally, joint work with Kim, K¹ampchen and Hallam on designing optimal reflector surfaces inspired by the CF-FM bat’s large pinnae is presented. Genetic algorithms are used for improving the current echolocating capabilities of the sonarhead for both arc scanning and IID behaviours. Multiple reflectors around the transducer using a simple ray light-like model of sound propagation are evolved. Results show phase cancellation problems and the need of a more complete model of wave propagation. Inspired by a physical model of sound diffraction and reflections in the human concha a new model is devised and used to evolve pinnae surfaces made of finite elements. Some interesting paraboloid shapes are obtained, improving performance significantly with respect to the bare transducer

    ORIENTING IN 3D SPACE: BEHAVIORAL AND NEUROPHYSIOLOGICAL STUDIES IN BIG BROWN BATS

    Get PDF
    In their natural environment, animals engage in a wide range of behavioral tasks that require them to orient to stimuli in three-dimensional space, such as navigating around obstacles, reaching for objects and escaping from predators. Echolocating bats, for example, have evolved a high-resolution 3D acoustic orienting system that allows them to localize and track small moving targets in azimuth, elevation and range. The bat’s active control over the features of its echolocation signals contributes directly to the information represented in its sonar receiver, and its adaptive adjustments in sonar signal design provide a window into the acoustic features that are important for different behavioral tasks. When bats inspect sonar objects and require accurate 3D localization of targets, they produce sonar sound groups (SSGs), which are clusters of sonar calls produced at short intervals and flanked by long interval calls. SSGs are hypothesized to enhance the bat’s range resolution, but this hypothesis has not been directly tested. We first, in Chapter 2, provide a comprehensive comparison of SSG production of bats flying in the field and in the lab under different environmental conditions. Further, in Chapter 3, we devise an experiment to specifically compare SSG production under conditions when target motion is predictable and unpredictable, with the latter mimicking natural conditions where bats chase erratically moving prey. Data from both of these studies are consistent with the hypothesis that SSGs improve the bat’s spatio-temporal resolution of target range, and provide a behavioral foundation for the analysis and interpretation of neural recording data in chapters 4 and 6. The complex orienting behaviors exhibited by animals can be understood as a feedback loop between sensing and action. A primary brain structure involved in sensorimotor integration is the midbrain superior colliculus (SC). The SC is a widely studied brain region and has been implicated in species-specific orienting behaviors. However, most studies of the SC have investigated its functional organization using synthetic 2D (azimuth and elevation) stimuli in restrained animals, leaving gaps in our knowledge of how 3D space (azimuth, elevation and distance) is represented in the CNS. In contrast, the representation of stimulus distance in the auditory systems of bats has been widely studied. Almost all of these studies have been conducted in passively listening bats, thus severing the loop between sensing and action and leaving gaps in our knowledge regarding how target distance is represented in the auditory system of actively echolocating bats. In chapters 4, 5 and 6, we attempt to fill gaps in our knowledge by recording from the SC of free flying echolocating bats engaged in a naturalistic navigation task where bats produce SSGs. In chapter 4, we provide a framework to compute time-of-arrival and direction of the instantaneous echo stimuli received at the bats ears. In chapters 5 and 6, we provide an algorithm to classify neural activity in the SC as sensory, sensorimotor and premotor and then compute spatial receptive fields of SC neurons. Our results show that neurons in the SC of the free-flying echolocating bat respond selectively to stimulus azimuth, elevation and range. Importantly, we find that SC neuron response profiles are modulated by the bat’s behavioral state, indicated by the production of SSG. Broadly, we use both behavior and electrophysiology to understand the action-perception loop that supports spatial orientation by echolocation. We believe that the results and methodological advances presented here will open doors to further studies of sensorimotor integration in freely behaving animals

    Adaptations to changes in the acoustic scene of the echolocating bat

    Get PDF
    Our natural environment is noisy and in order to navigate it successfully, we must filter out the important components so that we may guide our next steps. In analyzing our acoustic scene, one of the most common challenges is to segregate speech communication sounds from background noise; this process is not unique to humans. Echolocating bats emit high frequency biosonar signals and listen to echoes returning off objects in their environment. The sound wave they receive is a merging of echoes reflecting off target prey and other scattered objects, conspecific calls and echoes, and any naturally-occurring environmental noises. The bat is faced with the challenge of segregating this complex sound wave into the components of interest to adapt its flight and echolocation behavior in response to fast and dynamic environmental changes. In this thesis, we employ two approaches to investigate the mechanisms that may aid the bat in analyzing its acoustic scene. First, we test the bat’s adaptations to changes of controlled echo-acoustic flow patterns, similar to those it may encounter when flying along forest edges and among clutter. Our findings show that big brown bats adapt their flight paths in response to the intervals between echoes, and suggest that there is a limit to how close objects can be spaced, before the bat does not represent them as distinct any longer. Further, we consider how bats that use different echolocation signals may navigate similar environments, and provide evidence of species-specific flight and echolocation adaptations. Second, we research how temporal patterning of echolocation calls is affected during competitive foraging of paired bats in open and cluttered environments. Our findings show that “silent behavior”, the ceasing of emitting echolocation calls, which had previously been proposed as a mechanism to avoid acoustic interference, or to “eavesdrop” on another bat, may not be as common as has been reported

    BIO-INSPIRED SONAR IN COMPLEX ENVIRONMENTS: ATTENTIVE TRACKING AND VIEW RECOGNITION

    Get PDF
    Bats are known for their unique ability to sense the world through echolocation. This allows them to perceive the world in a way that few animals do, but not without some difficulties. This dissertation explores two such tasks using a bio-inspired sonar system: tracking a target object in cluttered environments, and echo view recognition. The use of echolocation for navigating in dense, cluttered environments can be a challenge due to the need for rapid sampling of nearby objects in the face of delayed echoes from distant objects. If long-delay echoes from a distant object are received after the next pulse is sent out, these “aliased” echoes appear as close-range phantom objects. This dissertation presents three reactive strategies for a high pulse-rate sonar system to combat aliased echoes: (1) changing the interpulse interval to move the aliased echoes away in time from the tracked target, (2) changing positions to create a geometry without aliasing, and (3) a phase-based, transmission beam-shaping strategy to illuminate the target and not the aliasing object. While this task relates to immediate sensing needs and lower level motor loops, view recognition is involved in higher level navigation and planning. Neurons in the mammalian brain (specifically in the hippocampus formation) named “place cells” are thought to reflect this recognition of place and are involved in implementing a spatial map that can be used for path planning and memory recall. We propose hypothetical “echo view cells” that could contribute (along with odometry) to the creation of place cell representations actually observed in bats. We strive to recognize views over extended regions that are many body lengths in size, reducing the number of places to be remembered for a map. We have successfully demonstrated some of this spatial invariance by training feed-forward neural networks (traditional neural networks and spiking neural networks) to recognize 66 distinct places in a laboratory environment over a limited range of translations and rotations. We further show how the echo view cells respond in between known places and how the population of cell outputs can be combined over time for continuity

    Acoustic sequences in non-human animals: a tutorial review and prospectus.

    Get PDF
    Animal acoustic communication often takes the form of complex sequences, made up of multiple distinct acoustic units. Apart from the well-known example of birdsong, other animals such as insects, amphibians, and mammals (including bats, rodents, primates, and cetaceans) also generate complex acoustic sequences. Occasionally, such as with birdsong, the adaptive role of these sequences seems clear (e.g. mate attraction and territorial defence). More often however, researchers have only begun to characterise - let alone understand - the significance and meaning of acoustic sequences. Hypotheses abound, but there is little agreement as to how sequences should be defined and analysed. Our review aims to outline suitable methods for testing these hypotheses, and to describe the major limitations to our current and near-future knowledge on questions of acoustic sequences. This review and prospectus is the result of a collaborative effort between 43 scientists from the fields of animal behaviour, ecology and evolution, signal processing, machine learning, quantitative linguistics, and information theory, who gathered for a 2013 workshop entitled, 'Analysing vocal sequences in animals'. Our goal is to present not just a review of the state of the art, but to propose a methodological framework that summarises what we suggest are the best practices for research in this field, across taxa and across disciplines. We also provide a tutorial-style introduction to some of the most promising algorithmic approaches for analysing sequences. We divide our review into three sections: identifying the distinct units of an acoustic sequence, describing the different ways that information can be contained within a sequence, and analysing the structure of that sequence. Each of these sections is further subdivided to address the key questions and approaches in that area. We propose a uniform, systematic, and comprehensive approach to studying sequences, with the goal of clarifying research terms used in different fields, and facilitating collaboration and comparative studies. Allowing greater interdisciplinary collaboration will facilitate the investigation of many important questions in the evolution of communication and sociality.This review was developed at an investigative workshop, “Analyzing Animal Vocal Communication Sequences” that took place on October 21–23 2013 in Knoxville, Tennessee, sponsored by the National Institute for Mathematical and Biological Synthesis (NIMBioS). NIMBioS is an Institute sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture through NSF Awards #EF-0832858 and #DBI-1300426, with additional support from The University of Tennessee, Knoxville. In addition to the authors, Vincent Janik participated in the workshop. D.T.B.’s research is currently supported by NSF DEB-1119660. M.A.B.’s research is currently supported by NSF IOS-0842759 and NIH R01DC009582. M.A.R.’s research is supported by ONR N0001411IP20086 and NOPP (ONR/BOEM) N00014-11-1-0697. S.L.DeR.’s research is supported by the U.S. Office of Naval Research. R.F.-i-C.’s research was supported by the grant BASMATI (TIN2011-27479-C04-03) from the Spanish Ministry of Science and Innovation. E.C.G.’s research is currently supported by a National Research Council postdoctoral fellowship. E.E.V.’s research is supported by CONACYT, Mexico, award number I010/214/2012.This is the accepted manuscript. The final version is available at http://dx.doi.org/10.1111/brv.1216
    • 

    corecore