174,975 research outputs found

    A new approach for discovering business process models from event logs.

    Get PDF
    Process mining is the automated acquisition of process models from the event logs of information systems. Although process mining has many useful applications, not all inherent difficulties have been sufficiently solved. A first difficulty is that process mining is often limited to a setting of non-supervised learnings since negative information is often not available. Moreover, state transitions in processes are often dependent on the traversed path, which limits the appropriateness of search techniques based on local information in the event log. Another difficulty is that case data and resource properties that can also influence state transitions are time-varying properties, such that they cannot be considered ascross-sectional.This article investigates the use of first-order, ILP classification learners for process mining and describes techniques for dealing with each of the above mentioned difficulties. To make process mining a supervised learning task, we propose to include negative events in the event log. When event logs contain no negative information, a technique is described to add artificial negative examples to a process log. To capture history-dependent behavior the article proposes to take advantage of the multi-relational nature of ILP classification learners. Multi-relational process mining allows to search for patterns among multiple event rows in the event log, effectively basing its search on global information. To deal with time-varying case data and resource properties, a closed-world version of the Event Calculus has to be added as background knowledge, transforming the event log effectively in a temporal database. First experiments on synthetic event logs show that first-order classification learners are capable of predicting the behavior with high accuracy, even under conditions of noise.Credit; Credit scoring; Models; Model; Applications; Performance; Space; Decision; Yield; Real life; Risk; Evaluation; Rules; Neural networks; Networks; Classification; Research; Business; Processes; Event; Information; Information systems; Systems; Learning; Data; Behavior; Patterns; IT; Event calculus; Knowledge; Database; Noise;

    Substructure Discovery Using Minimum Description Length and Background Knowledge

    Full text link
    The ability to identify interesting and repetitive substructures is an essential component to discovering knowledge in structural data. We describe a new version of our SUBDUE substructure discovery system based on the minimum description length principle. The SUBDUE system discovers substructures that compress the original data and represent structural concepts in the data. By replacing previously-discovered substructures in the data, multiple passes of SUBDUE produce a hierarchical description of the structural regularities in the data. SUBDUE uses a computationally-bounded inexact graph match that identifies similar, but not identical, instances of a substructure and finds an approximate measure of closeness of two substructures when under computational constraints. In addition to the minimum description length principle, other background knowledge can be used by SUBDUE to guide the search towards more appropriate substructures. Experiments in a variety of domains demonstrate SUBDUE's ability to find substructures capable of compressing the original data and to discover structural concepts important to the domain. Description of Online Appendix: This is a compressed tar file containing the SUBDUE discovery system, written in C. The program accepts as input databases represented in graph form, and will output discovered substructures with their corresponding value.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl

    On Cognitive Preferences and the Plausibility of Rule-based Models

    Get PDF
    It is conventional wisdom in machine learning and data mining that logical models such as rule sets are more interpretable than other models, and that among such rule-based models, simpler models are more interpretable than more complex ones. In this position paper, we question this latter assumption by focusing on one particular aspect of interpretability, namely the plausibility of models. Roughly speaking, we equate the plausibility of a model with the likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that, all other things being equal, longer explanations may be more convincing than shorter ones, and that the predominant bias for shorter models, which is typically necessary for learning powerful discriminative models, may not be suitable when it comes to user acceptance of the learned models. To that end, we first recapitulate evidence for and against this postulate, and then report the results of an evaluation in a crowd-sourcing study based on about 3.000 judgments. The results do not reveal a strong preference for simple rules, whereas we can observe a weak preference for longer rules in some domains. We then relate these results to well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or the recogition heuristic, and investigate their relation to rule length and plausibility.Comment: V4: Another rewrite of section on interpretability to clarify focus on plausibility and relation to interpretability, comprehensibility, and justifiabilit

    Types of cost in inductive concept learning

    Get PDF
    Inductive concept learning is the task of learning to assign cases to a discrete set of classes. In real-world applications of concept learning, there are many different types of cost involved. The majority of the machine learning literature ignores all types of cost (unless accuracy is interpreted as a type of cost measure). A few papers have investigated the cost of misclassification errors. Very few papers have examined the many other types of cost. In this paper, we attempt to create a taxonomy of the different types of cost that are involved in inductive concept learning. This taxonomy may help to organize the literature on cost-sensitive learning. We hope that it will inspire researchers to investigate all types of cost in inductive concept learning in more depth

    Decision Making in the Medical Domain: Comparing the Effectiveness of GP-Generated Fuzzy Intelligent Structures

    Get PDF
    ABSTRACT: In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based systems and fuzzy Petri nets with genetic programming. Then, we apply cellular encoding in order to express the fuzzy Petri nets with arbitrary size and topology. The models are examined thoroughly in four real-world medical data sets. Results are presented in detail and the competitive advantages and drawbacks of the selected methodologies are discussed, in respect to the nature of each application domain. Conclusions are drawn on the effectiveness and efficiency of the presented approach

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA
    corecore