108 research outputs found

    Business process model customisation using domain-driven controlled variability management and rule generation

    Get PDF
    Business process models are abstract descriptions and as such should be applicable in different situations. In order for a single process model to be reused, we need support for configuration and customisation. Often, process objects and activities are domain-specific. We use this observation and allow domain models to drive the customisation. Process variability models, known from product line modelling and manufacturing, can control this customisation by taking into account the domain models. While activities and objects have already been studied, we investigate here the constraints that govern a process execution. In order to integrate these constraints into a process model, we use a rule-based constraints language for a workflow and process model. A modelling framework will be presented as a development approach for customised rules through a feature model. Our use case is content processing, represented by an abstract ontology-based domain model in the framework and implemented by a customisation engine. The key contribution is a conceptual definition of a domain-specific rule variability language

    A Mixed Reality Approach to 3D Interactive Prototyping for Participatory Design of Ambient Intelligence

    Get PDF
    Ambient Intelligence (AmI in short) is a multi-disciplinary approach aimed at enriching physical environments with a network of distributed devices in order to support humans in achieving their everyday goals. However, in current research and development, AmI is still largely considered within the engineering domain bearing undeveloped relationship with architecture. The fact that architecture design substantially aims to address the requirements of supporting people in carrying out their everyday life activities, tasks and practices with spatial strategies. These are common to the AmI’s objectives and purposes, and we aim at considering the possibilities or even necessities of investigating the potential design approach accessible to an architectural context. For end users, AmI is a new type of service. Designing and evaluating the AmI experience before resources are spent on designing the processes and technology needed to eventually run the service can save large amounts of time and money. Therefore, it is essential to create an environment in which designers can involve real people in trying out the service design proposals as early as possible in the design process. Existing cases related to stakeholder engaged design of AmI have primarily focused on engineering implementation and generally only present final outcome to stakeholders for user evaluation. Researchers have been able to build AmI prototypes for design communication. However, most of these prototypes are typically built without the involvement of stakeholders and architects in their conceptual design stage. Using concepts solely designed by engineers may not be user centric and even contain safety risks. The key research question of this thesis is: “How can Ambient Intelligence be designed through a participatory process that involves stakeholders and prospective users?" The thesis consists of the following five components: 1) Identification of a novel participatory design process for modelling AmI scenarios; 2) Identification of the requirements to support prototyping of AmI design, resulting in a conceptual framework that both "lowers the floor" (i.e. making it easier for designers to build the AmI prototypes) and "raises the ceiling" (i.e. increasing the ability of stakeholders and end users to participate in the design process deeply); i 3) Prototyping an experimental Mixed Reality Modelling (MRM in short) platform to facilitate the participatory design of AmI that supports the requirements, design process, and scenarios prototyping; 4) Case study of applying MRM platform to participatory design of a Smart Laser Cutting Workshop(LCW in short) which used to evaluate the proposed MRM based AmI design approach. The result of the research shows that the MRM based participatory design approach is able to support the design of AmI effectively

    OpenUP/MDRE: A Model-Driven Requirements Engineering Approach for Health-Care Systems

    Full text link
    The domains and problems for which it would be desirable to introduce information systems are currently very complex and the software development process is thus of the same complexity. One of these domains is health-care. Model-Driven Development (MDD) and Service-Oriented Architecture (SOA) are software development approaches that raise to deal with complexity, to reduce time and cost of development, augmenting flexibility and interoperability. However, many techniques and approaches that have been introduced are of little use when not provided under a formalized and well-documented methodological umbrella. A methodology gives the process a well-defined structure that helps in fast and efficient analysis and design, trouble-free implementation, and finally results in the software product improved quality. While MDD and SOA are gaining their momentum toward the adoption in the software industry, there is one critical issue yet to be addressed before its power is fully realized. It is beyond dispute that requirements engineering (RE) has become a critical task within the software development process. Errors made during this process may have negative effects on subsequent development steps, and on the quality of the resulting software. For this reason, the MDD and SOA development approaches should not only be taken into consideration during design and implementation as usually occurs, but also during the RE process. The contribution of this dissertation aims at improving the development process of health-care applications by proposing OpenUP/MDRE methodology. The main goal of this methodology is to enrich the development process of SOA-based health-care systems by focusing on the requirements engineering processes in the model-driven context. I believe that the integration of those two highly important areas of software engineering, gathered in one consistent process, will provide practitioners with many benets. It is noteworthy that the approach presented here was designed for SOA-based health-care applications, however, it also provides means to adapt it to other architectural paradigms or domains. The OpenUP/MDRE approach is an extension of the lightweight OpenUP methodology for iterative, architecture-oriented and model-driven software development. The motivation for this research comes from the experience I gained as a computer science professional working on the health-care systems. This thesis also presents a comprehensive study about: i) the requirements engineering methods and techniques that are being used in the context of the model-driven development, ii) known generic but flexible and extensible methodologies, as well as approaches for service-oriented systems development, iii) requirements engineering techniques used in the health-care industry. Finally, OpenUP/MDRE was applied to a concrete industrial health-care project in order to show the feasibility and accuracy of this methodological approach.Loniewski, G. (2010). OpenUP/MDRE: A Model-Driven Requirements Engineering Approach for Health-Care Systems. http://hdl.handle.net/10251/11652Archivo delegad

    Designing Digital Work

    Get PDF
    Combining theory, methodology and tools, this open access book illustrates how to guide innovation in today’s digitized business environment. Highlighting the importance of human knowledge and experience in implementing business processes, the authors take a conceptual perspective to explore the challenges and issues currently facing organizations. Subsequent chapters put these concepts into practice, discussing instruments that can be used to support the articulation and alignment of knowledge within work processes. A timely and comprehensive set of tools and case studies, this book is essential reading for those researching innovation and digitization, organization and business strategy
    • …
    corecore