3,805 research outputs found

    PubServer: literature searches by homology.

    Get PDF
    PubServer, available at http://pubserver.burnham.org/, is a tool to automatically collect, filter and analyze publications associated with groups of homologous proteins. Protein entries in databases such as Entrez Protein database at NCBI contain information about publications associated with a given protein. The scope of these publications varies a lot: they include studies focused on biochemical functions of individual proteins, but also reports from genome sequencing projects that introduce tens of thousands of proteins. Collecting and analyzing publications related to sets of homologous proteins help in functional annotation of novel protein families and in improving annotations of well-studied protein families or individual genes. However, performing such collection and analysis manually is a tedious and time-consuming process. PubServer automatically collects identifiers of homologous proteins using PSI-Blast, retrieves literature references from corresponding database entries and filters out publications unlikely to contain useful information about individual proteins. It also prepares simple vocabulary statistics from titles, abstracts and MeSH terms to identify the most frequently occurring keywords, which may help to quickly identify common themes in these publications. The filtering criteria applied to collected publications are user-adjustable. The results of the server are presented as an interactive page that allows re-filtering and different presentations of the output

    Finding the Core-Genes of Chloroplasts

    Full text link
    Due to the recent evolution of sequencing techniques, the number of available genomes is rising steadily, leading to the possibility to make large scale genomic comparison between sets of close species. An interesting question to answer is: what is the common functionality genes of a collection of species, or conversely, to determine what is specific to a given species when compared to other ones belonging in the same genus, family, etc. Investigating such problem means to find both core and pan genomes of a collection of species, \textit{i.e.}, genes in common to all the species vs. the set of all genes in all species under consideration. However, obtaining trustworthy core and pan genomes is not an easy task, leading to a large amount of computation, and requiring a rigorous methodology. Surprisingly, as far as we know, this methodology in finding core and pan genomes has not really been deeply investigated. This research work tries to fill this gap by focusing only on chloroplastic genomes, whose reasonable sizes allow a deep study. To achieve this goal, a collection of 99 chloroplasts are considered in this article. Two methodologies have been investigated, respectively based on sequence similarities and genes names taken from annotation tools. The obtained results will finally be evaluated in terms of biological relevance

    Simrank: Rapid and sensitive general-purpose k-mer search tool

    Get PDF
    Terabyte-scale collections of string-encoded data are expected from consortia efforts such as the Human Microbiome Project (http://nihroadmap.nih.gov/hmp). Intra- and inter-project data similarity searches are enabled by rapid k-mer matching strategies. Software applications for sequence database partitioning, guide tree estimation, molecular classification and alignment acceleration have benefited from embedded k-mer searches as sub-routines. However, a rapid, general-purpose, open-source, flexible, stand-alone k-mer tool has not been available. Here we present a stand-alone utility, Simrank, which allows users to rapidly identify database strings the most similar to query strings. Performance testing of Simrank and related tools against DNA, RNA, protein and human-languages found Simrank 10X to 928X faster depending on the dataset. Simrank provides molecular ecologists with a high-throughput, open source choice for comparing large sequence sets to find similarity

    Text-mining and information-retrieval services for molecular biology

    Get PDF
    Text-mining in molecular biology - defined as the automatic extraction of information about genes, proteins and their functional relationships from text documents - has emerged as a hybrid discipline on the edges of the fields of information science, bioinformatics and computational linguistics. A range of text-mining applications have been developed recently that will improve access to knowledge for biologists and database annotators

    Determining and comparing protein function in Bacterial genome sequences

    Get PDF

    A method for developing in-silico protein homologs

    Get PDF
    Computational methods for identifying and screening the most promising drug receptor candidates in the human genome are of great interest to drug discovery researchers. Successful methods will accurately identify and narrow the field of potential drug receptor candidates. This study details one such method. The method described here begins with the assumption that novel drug receptors have high sequence similarity to established drug receptors. The similarity search program FASTA3 aligns translated sequences of the human genome to known drug receptor sequences and ranks these alignments by measuring their statistical significance. Query results returned by FASTA3 are assembled into in-silico proteins or artificially generated homologs of known drug receptors. A second similarity search program, BLASTP, aligns in-silico proteins with a protein database, and also ranks alignments based on statistical significance. A potentially valuable in-silico protein identifies its generating drug receptor as the top-ranking result returned from the BLASTP search, and may represent a new family member of a particular group of drug receptors

    An application in bioinformatics : a comparison of affymetrix and compugen human genome microarrays

    Get PDF
    The human genome microarrays from Compugen® and Affymetrix® were compared in the context of the emerging field of computational biology. The two premier database servers for genomic sequence data, the National Center for Biotechnology Information and the European Bioinformatics Institute, were described in detail. The various databases and data mining tools available through these data servers were also discussed. Microarrays were examined from a historical perspective and their main current applications-expression analysis, mutation analysis, and comparative genomic hybridization-were discussed. The two main types of microarrays, cDNA spotted microarrays and high-density spotted microarrays were analyzed by exploring the human genome microarray from Compugen® and the HGU133 Set from Affymetrix® respectively. Array design issues, sequence collection and analysis, and probe selection processes for the two representative types of arrays were described. The respective chip design of the two types of microarrays was also analyzed. It was found that the human genome microarray from Compugen 0 contains probes that interrogate 1,119,840 bases corresponding to 18,664 genes, while the HG-U133 Set from Affymetrix® contains probes that interrogate only 825,000 bases corresponding to 33,000 genes. Based on this, the efficiency of the 25-mer probes of the HG-U133 Set from Affymetrix® compared to the 60-mer probes of the microarray from Compugen® was questioned

    BBP: Brucella genome annotation with literature mining and curation

    Get PDF
    BACKGROUND: Brucella species are Gram-negative, facultative intracellular bacteria that cause brucellosis in humans and animals. Sequences of four Brucella genomes have been published, and various Brucella gene and genome data and analysis resources exist. A web gateway to integrate these resources will greatly facilitate Brucella research. Brucella genome data in current databases is largely derived from computational analysis without experimental validation typically found in peer-reviewed publications. It is partially due to the lack of a literature mining and curation system able to efficiently incorporate the large amount of literature data into genome annotation. It is further hypothesized that literature-based Brucella gene annotation would increase understanding of complicated Brucella pathogenesis mechanisms. RESULTS: The Brucella Bioinformatics Portal (BBP) is developed to integrate existing Brucella genome data and analysis tools with literature mining and curation. The BBP InterBru database and Brucella Genome Browser allow users to search and analyze genes of 4 currently available Brucella genomes and link to more than 20 existing databases and analysis programs. Brucella literature publications in PubMed are extracted and can be searched by a TextPresso-powered natural language processing method, a MeSH browser, a keywords search, and an automatic literature update service. To efficiently annotate Brucella genes using the large amount of literature publications, a literature mining and curation system coined Limix is developed to integrate computational literature mining methods with a PubSearch-powered manual curation and management system. The Limix system is used to quickly find and confirm 107 Brucella gene mutations including 75 genes shown to be essential for Brucella virulence. The 75 genes are further clustered using COG. In addition, 62 Brucella genetic interactions are extracted from literature publications. These results make possible more comprehensive investigation of Brucella pathogenesis. Other BBP features include publication email alert service, Brucella researchers' contact database, and discussion forum. CONCLUSION: BBP is a gateway for Brucella researchers to search, analyze, and curate Brucella genome data originated from public databases and literature. Brucella gene mutations and genetic interactions are annotated using Limix leading to better understanding of Brucella pathogenesis
    corecore