717 research outputs found

    Using autoencoders for radio signal denoising

    Get PDF
    We investigated the use of a Deep Learning approach to radio signal de-noising. This data-driven approach has does not require explicit use of expert knowledge to set up the parameters of the denoising procedure and grants great flexibility across many channel conditions. The core component used in this work is a Convolutional De-noising AutoEncoder, known to be very effective in image processing. The key of our approach consists in transforming the radio signal into a representation suitable to the CDAE: we transform the time-domain signal into a 2D signal using the Short Time Fourier Transform. We report about the performance of the approach in preamble denoising across protocols of the IEEE 802.11 family, studied using simulation data. This approach could be used within a machine learning pipeline: the denoised data can be fed to a protocol classifier. A perspective advantage of using the AutoEncoders in that pipeline is that they can be co-trained with the downstream classifier, to optimize the classification accuracy

    A Deep Learning Approach to Radio Signal Denoising

    Get PDF
    This paper proposes a Deep Learning approach to radio signal de-noising. This approach is data-driven, thus it allows de-noising signals, corresponding to distinct protocols, without requiring explicit use of expert knowledge, in this way granting higher flexibility. The core component of the Artificial Neural Network architecture used in this work is a Convolutional De-noising AutoEncoder. We report about the performance of the system in spectrogram-based denoising of the protocol preamble across protocols of the IEEE 802.11 family, studied using simulation data. This approach can be used within a machine learning pipeline: the denoised data can be fed to a protocol classifier. A further perspective advantage of using the AutoEncoders in such a pipeline is that they can be co-trained with the downstream classifier (protocol detector), to optimize its accuracy

    Signal reconstruction by means of Embedding, Clustering and AutoEncoder Ensembles

    Get PDF
    We study the denoising and reconstruction of corrupted signals by means of AutoEncoder ensembles. In order to guarantee experts' diversity in the ensemble, we apply, prior to learning, a dimensional reduction pass (to map the examples into a suitable Euclidean space) and a partitional clustering pass: each cluster is then used to train a distinct AutoEncoder. We study the approach with an audio file benchmark: the original signals are artificially corrupted by Doppler effect and reverb. The results support the comparative effectiveness of the approach, w.r.t. the approach based on a single AutoEncoder. The processing pipeline using Local Linear Embedding, k means, then k Convolutional Denoising AutoEncoders reduces the reconstruction error by 35% w.r.t. the baseline approach

    Classification and Recovery of Radio Signals from Cosmic Ray Induced Air Showers with Deep Learning

    Full text link
    Radio emission from air showers enables measurements of cosmic particle kinematics and identity. The radio signals are detected in broadband Megahertz antennas among continuous background noise. We present two deep learning concepts and their performance when applied to simulated data. The first network classifies time traces as signal or background. We achieve a true positive rate of about 90% for signal-to-noise ratios larger than three with a false positive rate below 0.2%. The other network is used to clean the time trace from background and to recover the radio time trace originating from an air shower. Here we achieve a resolution in the energy contained in the trace of about 20% without a bias for 80%80\% of the traces with a signal. The obtained frequency spectrum is cleaned from signals of radio frequency interference and shows the expected shape.Comment: 20 pages, 13 figures, resubmitted to JINS

    Removing Radio Frequency Interference from Auroral Kilometric Radiation with Stacked Autoencoders

    Full text link
    Radio frequency data in astronomy enable scientists to analyze astrophysical phenomena. However, these data can be corrupted by radio frequency interference (RFI) that limits the observation of underlying natural processes. In this study, we extend recent developments in deep learning algorithms to astronomy data. We remove RFI from time-frequency spectrograms containing auroral kilometric radiation (AKR), a coherent radio emission originating from the Earth's auroral zones that is used to study astrophysical plasmas. We propose a Denoising Autoencoder for Auroral Radio Emissions (DAARE) trained with synthetic spectrograms to denoise AKR signals collected at the South Pole Station. DAARE achieves 42.2 peak signal-to-noise ratio (PSNR) and 0.981 structural similarity (SSIM) on synthesized AKR observations, improving PSNR by 3.9 and SSIM by 0.064 compared to state-of-the-art filtering and denoising networks. Qualitative comparisons demonstrate DAARE's capability to effectively remove RFI from real AKR observations, despite being trained completely on a dataset of simulated AKR. The framework for simulating AKR, training DAARE, and employing DAARE can be accessed at github.com/Cylumn/daare.Comment: 5 pages, 3 figures, 48th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2023

    Counting Human Flow with Deep Neural Network

    Get PDF
    Human flow counting has many applications in space management. This study applied channel state information (CSI) available in IEEE 802.11n networks to characterize the flow count. Raw inputs including mean, standard deviation and five-number summary were extracted from windowed CSI data. Due to the large number of raw inputs, stacked denoising autoencoders were used to extract hierarchical features from raw inputs and a final layer of softmax regression was used to model the flow counting problem. It is found that this deep neural network structure beats other popular classification algorithms including random forest, logistic regression, support vector machine and multilayer perceptron in predicting the flow count with attractive speed performance

    Low-effort place recognition with WiFi fingerprints using deep learning

    Full text link
    Using WiFi signals for indoor localization is the main localization modality of the existing personal indoor localization systems operating on mobile devices. WiFi fingerprinting is also used for mobile robots, as WiFi signals are usually available indoors and can provide rough initial position estimate or can be used together with other positioning systems. Currently, the best solutions rely on filtering, manual data analysis, and time-consuming parameter tuning to achieve reliable and accurate localization. In this work, we propose to use deep neural networks to significantly lower the work-force burden of the localization system design, while still achieving satisfactory results. Assuming the state-of-the-art hierarchical approach, we employ the DNN system for building/floor classification. We show that stacked autoencoders allow to efficiently reduce the feature space in order to achieve robust and precise classification. The proposed architecture is verified on the publicly available UJIIndoorLoc dataset and the results are compared with other solutions

    Sparsity-based autoencoders for denoising cluttered radar signatures

    Get PDF
    Narrowband and broadband indoor radar images significantly deteriorate in the presence of target-dependent and target-independent static and dynamic clutter arising from walls. A stacked and sparse denoising autoencoder (StackedSDAE) is proposed for mitigating the wall clutter in indoor radar images. The algorithm relies on the availability of clean images and the corresponding noisy images during training and requires no additional information regarding the wall characteristics. The algorithm is evaluated on simulated Doppler-time spectrograms and high-range resolution profiles generated for diverse radar frequencies and wall characteristics in around-the-corner radar (ACR) scenarios. Additional experiments are performed on range-enhanced frontal images generated from measurements gathered from a wideband radio frequency imaging sensor. The results from the experiments show that the StackedSDAE successfully reconstructs images that closely resemble those that would be obtained in free space conditions. Furthermore, the incorporation of sparsity and depth in the hidden layer representations within the autoencoder makes the algorithm more robust to low signal-to-noise ratio (SNR) and label mismatch between clean and corrupt data during training than the conventional single-layer DAE. For example, the denoised ACR signatures show a structural similarity above 0.75 to clean free space images at SNR of −10 dB and label mismatch error of 50%
    • 

    corecore