3,664 research outputs found

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    The design and fabrication of a thermal microprobe integrated on an atomic force microscope probe tip

    Get PDF
    A thermal microprobe has been designed and built for high resolution temperature sensing. The thermal microprobe consists of a very-thin-film thermocouple junction confined to the very end of a low mass Atomic Force Microscope (AFM) probe tip. Essential to high resolution temperature sensing is the confinement of the thermocouple junction to a short distance at the AFM tip. This confinement is achieved by controlled photoresist coating. Experimental prototypes have been made with the junction confined to within 0.3 ”m of the tip. The couple is made of Au/Pd, and the two metals are electrically separated elsewhere by a thin insulating layer. The device is designed for insertion in an AFM instrument so that topographical and thermal images can be made with the same tip. Large contact pads permit mechanical and ohmic contacting with spring clamps. Processing begins with double-polished, n-type, 4-inch-diameter, and 300 ”m thick silicon wafers. Probe tips are formed by a combination of RIE, wet chemical etching, and oxidation sharpening, which makes the tips atomically sharp. The hot thermocouple junction is formed by controlled photoresist coating. The metal layers are sputtering deposited and the cantilevers are released by KOH etching and RIE. The thermal microprobe gives a high temperature resolution and a high spatial resolution. The thermal mass is kept low in order to cause minimal disturbance of the component under measurement. The thermal output of the microprobe is 5.6 ”V/°C and is linear over the temperature range 25 - 110°C

    Nanoscale strain characterisation of modern microelectronic devices

    Get PDF
    PhD ThesisSources of stress and strain in modern microelectronics can be either beneficial to the electrical performance or detrimental to the mechanical integrity and ultimately lifetime of the device. Strain engineering is commonplace in state-of-the-art device fabrication as a means to boost performance in the face of device scaling limitation. The strain present in the device is directly related to the improvement factor and as such precise measurements and good understanding are of utmost importance due to the many thermal processing steps that can induce or cause relaxation of the strain. Front-end-of-line (FEOL) strain characterisation is becoming increasingly challenging due to the small volumes of material and nanoscale feature sizes being analysed. In this work, an extensive survey of strain characterisation techniques was undertaken. Narrow sSOI stripes were profiled using conventional Raman spectroscopy. Unlike with previous studies, it was shown that it is possible to achieve nanoscale measurements using current techniques. This study was supported by ANSYS FE simulation. The review of the literature briefly investigates the possibility of EBSD as a strain measurement tool. It is possible to calculate not just an absolute strain value as achievable with Raman spectroscopy, but the strain tensor. However, this is a difficult and complex process and not necessary for use in industry. This study proposes the possibility of a more simple method that would provide a good calibration technique to confirm Raman measurements. SERS and TERS are explored in detail as the most promising techniques when dealing with device scaling. Currently, SERS is a destructive technique not suitable for use in a highly cost driven industry such as semiconductor manufacturing. While it theoretically gives improved surface selectivity over conventional Raman spectroscopy, there is no improvement to the xy spatial resolution. With Si and SiGe samples, this study concludes there is also often no surface selectivity with either technique and the mechanisms behind the enhancement are not understood to the point of being able to implement the techniques in a process line. However, where a non-destructive technique is desired, outlined in this study is a method of achieving the SERS effect without sacrificing the sample. Aggressive scaling has forced the dimensions of the interconnecting wires that give the devices functionality to the deep submicron range. Copper, Cu has been introduced as a replacement to the traditionally used aluminium, Al because of its superior electrical and mechanical properties and scalability. However, as these wires begin to approach the dimensions of thin foils, the microtexture of the wires becomes significantly different from their bulk counterparts. This can affect the mechanical integrity of the interconnects and this has an impact on the reliability of the device. Failure mechanisms such as blistering, cracking and peeling caused by stress and strain are not uncommon and traditional methods of characterising residual stress in the thin films is no longer applicable to these narrow wires. The mechanical properties and microtexture of thin copper films annealed at temperatures comparative to those found in device manufacturing were characterised in some detail. EBSD was used to determine the grain size and structure of the films before nanoindentation confirmed properties such as hardness and elastic modulus. These results pave the way for investigation of strain applied along deep-submicron interconnects to lead to further understanding of what causes failure mechanisms from interconnecting wires

    Colloidal crystals and water: Perspectives on liquid–solid nanoscale phenomena in wet particulate media

    Get PDF
    Solid colloidal ensembles inherently contain water adsorbed from the ambient moisture. This water, confined in the porous network formed by the building submicron spheres, greatly affects the ensemble properties. Inversely, one can benefit from such influence on collective features to explore the water behavior in such nanoconfinements. Recently, novel approaches have been developed to investigate in-depth where and how water is placed in the nanometric pores of self-assembled colloidal crystals. Here, we summarize these advances, along with new ones, that are linked to general interfacial water phenomena like adsorption, capillary forces, and flow. Water-dependent structural properties of the colloidal crystal give clues to the interplay between nanoconfined water and solid fine particles that determines the behavior of ensembles. We elaborate on how the knowledge gained on water in colloidal crystals provides new opportunities for multidisciplinary study of interfacial and nanoconfined liquids and their essential role in the physics of utmost important systems such as particulate media

    Development of a fully-depleted thin-body FinFET process

    Get PDF
    The goal of this work is to develop the processes needed for the demonstration of a fully-depleted (FD) thin-body fin field effect transistor (FinFET). Recognized by the 2003 International Technology Roadmap for Semiconductors as an emerging non-classical CMOS technology, FinFETs exhibit high drive current, reduced short-channel effects, an extreme scalability to deep submicron regimes. The approach used in this study will build on previous FinFET research, along with new concepts and technologies. The critical aspects of this research are: (1) thin body creation using spacer etchmasks and oxidation/etchback schemes, (2) use of an oxynitride gate dielectric, (3) silicon crystal orientation effect evaluation, and (4) creation of fully-depleted FinFET devices of submicron gate length on Silicon-on-Insulator (SOI) substrates. The developed process yielded functional FinFETs of both thin body and wide body variety. Electrical tests were employed to describe device behaviour, including their subthreshold characteristics, standard operation, effects of gate misalignment on device performance, and impact of crystal orientation on device drive current. The process is shown to have potential for deep submicron regimes of fin width and gate length, and provides a good foundation for further research of FinFETs and similar technologies at RIT

    Colloidal crystals and water: Perspectives on liquid–solid nanoscale phenomena in wet particulate media

    Get PDF
    Solid colloidal ensembles inherently contain water adsorbed from the ambient moisture. This water, confined in the porous network formed by the building submicron spheres, greatly affects the ensemble properties. Inversely, one can benefit from such influence on collective features to explore the water behavior in such nanoconfinements. Recently, novel approaches have been developed to investigate in-depth where and how water is placed in the nanometric pores of self-assembled colloidal crystals. Here, we summarize these advances, along with new ones, that are linked to general interfacial water phenomena like adsorption, capillary forces, and flow. Water-dependent structural properties of the colloidal crystal give clues to the interplay between nanoconfined water and solid fine particles that determines the behavior of ensembles. We elaborate on how the knowledge gained on water in colloidal crystals provides new opportunities for multidisciplinary study of interfacial and nanoconfined liquids and their essential role in the physics of utmost important systems such as particulate media.Ministerio de EconomĂ­a, Industria y Competitividad MAT2014-58731-JIN y MAT2015-68075-RComunidad de Madrid S2013/MIT-274

    Multi-scale fabric evolution during hydro-mechanical probing of fine-grained soils

    Get PDF
    The majority of the studies on sensitive clays so far have focused on the hydro-mechanical response at engineering scale, using concepts from continuum mechanics. The fundamental mechanisms at particle scale, underpinning the emerging response, have so far been studied with post mortem analyses. Recent technological advances offer the possibility to monitor the evolving internal material response of clays simultaneously during testing. As opposed to only characterisation of clays at the nanometre scale, in this thesis X-ray techniques were used for a Swedish sensitive clay in-operando, during geomechanical testing. The aim was to quantify the response of sensitive clays, spanning from intraparticle to continuum scale, enabling to link the evolving internal material behaviour to the constitutive response at boundary value level. At submicron length-scale, Wide and Small Angle X-ray Scattering at laboratory and synchrotron facilities were used to track particle rotation and intraparticle spacing. This required the development of a plane strain X-ray trans-parent oedometer cell. X-ray Computed Tomography (XCT) was used to uniquely characterise the undisturbed sensitive clay at submicron scale using a nanotomograph at a synchrotron beam line in 3D. Most importantly, the 4D evolution of internal deformation was quantitatively monitored during drained hydro-mechanical probing. The latter required development of XCLAY, a bespoke miniature Bishop-Wesley triaxial cell enabling advanced stress-path testing compatible with XCT. X-ray scattering provided insight on the nanometre scale, in terms of the integrated response of intraparticle strain and particle orientation. During the 1D compression test two minerals present in the natural clay behaved differently: illite was stable, while for montmorillonite a new spacing was detected. Both minerals continued to align towards the horizontal axis. For the first time, the internal 3D structure within an undisturbed sensitive clay sample was revealed at submicron scale. The evolving internal deformations of the natural sensitive clay were resolved during hydro-mechanical probing in-operando under drained triaxial compression, considering pseudo-isotropic, K0 and highly deviatoric loading. The 4D deformation fields were extracted from the tomography data using Digital Volume Correlation (DVC). The K0 stress path resulted in the most homogeneous full-field strain maps, while the highly deviatoric path resulted in very inhomogeneous strain fields. The mean values of the strain fields compared well with the external measurements, thereby reinforcing the validity of prior experimental data on soft clays. The thesis demonstrates that geomechanical laboratory tests on fine-grained soils can be elegantly combined with non-destructive techniques

    The Mechanical Stress–Strain Properties of Single Electrospun Collagen Type I Nanofibers

    Get PDF
    Knowledge of the mechanical properties of electrospun fibers is important for their successful application in tissue engineering, material composites, filtration and drug delivery. In particular, electrospun collagen has great potential for biomedical applications due to its biocompatibility and promotion of cell growth and adhesion. Using a combined atomic force microscopy (AFM)/optical microscopy technique, the single fiber mechanical properties of dry, electrospun collagen type I were determined. The fibers were electrospun from a 80 mg ml−1 collagen solution in 1,1,1,3,3,3-hexafluro-2-propanol and collected on a striated surface suitable for lateral force manipulation by AFM. The small strain modulus, calculated from three-point bending analysis, was 2.82 GPa. The modulus showed significant softening as the strain increased. The average extensibility of the fibers was 33% of their initial length, and the average maximum stress (rupture stress) was 25 MPa. The fibers displayed significant energy loss and permanent deformations above 2% strai
    • 

    corecore