590 research outputs found

    Planning and Scheduling Transportation Vehicle Fleet in a Congested Traffic Environment

    Get PDF
    Transportation is a main component of supply chain competitiveness since it plays a major role in the inbound, inter-facility, and outbound logistics. In this context, assigning and scheduling vehicle routing is a crucial management problem. Despite numerous publications dealing with efficient scheduling methods for vehicle routing, very few addressed the inherent stochastic nature of travel times in this problem. In this paper, a vehicle routing problem with time windows and stochastic travel times due to potential traffic congestion is considered. The approach developed introduces mainly the traffic congestion component based on queueing theory. This is an innovative modeling scheme to capture the stochastic behavior of travel times. A case study is used both to illustrate the appropriateness of the approach as well as to show that time-independent solutions are often unrealistic within a congested traffic environment which is often the case on the european road networkstransportation; vehicle fleet; planning; scheduling; congested traffic

    THE CHARACTERISTICS STUDY OF SOLVING VARIANTS OF VEHICLE ROUTING PROBLEM AND ITS APPLICATION ON DISTRIBUTION PROBLEM

    Get PDF
    Vehicle Routing Problem (VRP) is one of the most challenging problems in combinatorial optimization. Objective of VRP is to find minimum length route starts and ends in a depot. There are some additional constraints such as more than one depot, service time, time window, capacity of vehicle, and many more. These are cause of VRP variants. Vehicle Routing Problem with Time Windows (VRPTW) is a variant of VRP with some additional constrains, that are number of requests may not exceed the vehicle capacity, as well as travel time and service time may not exceed the time window. Multi Depot Vehicle Routing Problem (MDVRP) has number of depots serving all customers, a number of vehicles distributing goods to customers with a minimum distance of distribution route without exceeding the capacity of the vehicle. Many researches have presented algorithms to solve VRPTW and MDVRP. This article discusses solution characteristics of VRPTW and MDVRP algorithms, and their performance. VRPTW algorithms reviewed are Tabu Search, Clarke and Wright, Nearest Insertion Heuristics, Harmony Search, Simulated Annealing, and Improved Ant Colony System algorithm. Performance of MDVRP algorithms studied are Self-developed Algorithm, Upper Bound, Clarke and Wright, Ant Colony Optimization, and Genetic Algorithm. Each algorithm is studied on its performance, process, advantages, and disadvantages. This article presents example of distribution problem in VRPTW and MDVRP, based on characteristic of the real problem. A computer program created using Delphi is implemented for VRPTW and MDVRP, to solve distribution problem for any number of vehicles and customer locations. Keywords: VRPTW, MDVRP, Distribution proble

    Dynamic vehicle routing with time windows in theory and practice

    Get PDF
    The vehicle routing problem is a classical combinatorial optimization problem. This work is about a variant of the vehicle routing problem with dynamically changing orders and time windows. In real-world applications often the demands change during operation time. New orders occur and others are canceled. In this case new schedules need to be generated on-the-fly. Online optimization algorithms for dynamical vehicle routing address this problem but so far they do not consider time windows. Moreover, to match the scenarios found in real-world problems adaptations of benchmarks are required. In this paper, a practical problem is modeled based on the procedure of daily routing of a delivery company. New orders by customers are introduced dynamically during the working day and need to be integrated into the schedule. A multiple ant colony algorithm combined with powerful local search procedures is proposed to solve the dynamic vehicle routing problem with time windows. The performance is tested on a new benchmark based on simulations of a working day. The problems are taken from Solomon’s benchmarks but a certain percentage of the orders are only revealed to the algorithm during operation time. Different versions of the MACS algorithm are tested and a high performing variant is identified. Finally, the algorithm is tested in situ: In a field study, the algorithm schedules a fleet of cars for a surveillance company. We compare the performance of the algorithm to that of the procedure used by the company and we summarize insights gained from the implementation of the real-world study. The results show that the multiple ant colony algorithm can get a much better solution on the academic benchmark problem and also can be integrated in a real-world environment

    Application of Artificial Bee Colony Algorithm in Vehicle Routing Problem With Time Windows

    Get PDF
    In order to improve the accuracy of the artificial bee colony algorithm (ABC) on vehicle routing problem with time window (VRPTW),This paper makes the following improvements to the ABC :We introduce three kinds of neighborhood search methods,In the leader bee and follower bee search stage,we changing the single search mode into a three-way search method,which improves the optimization depth of the algorithm.Conducting multiple neighborhood searches of new food sources generated by the scouter bee and proceeding to the next iteration has enhanced the survival of new food sources and increased the diversity of populations. The global optimal solution is recorded by setting and updating the bulletin board. Simulation experiments show that the improved discrete ABC algorithm has obvious advantages in solving large-scale VRPTW. Therefore, the improved discrete ABC algorithm has great potential and application value in solving VRPTW

    Exploring Heuristics for the Vehicle Routing Problem with Split Deliveries and Time Windows

    Get PDF
    This dissertation investigates the Vehicle Routing Problem with Split Deliveries and Time Windows. This problem assumes a depot of homogeneous vehicles and set of customers with deterministic demands requiring delivery. Split deliveries allow multiple visits to a customer and time windows restrict the time during which a delivery can be made. Several construction and local search heuristics are tested to determine their relative usefulness in generating solutions for this problem. This research shows a particular subset of the local search operators is particularly influential on solution quality and run time. Conversely, the construction heuristics tested do not significantly impact either. Several problem features are also investigated to determine their impact. Of the features explored, the ratio of customer demand to vehicle ratio revealed a significant impact on solution quality and influence on the effectiveness of the heuristics tested. Finally, this research introduces an ant colony metaheuristic coupled with a local search heuristic embedded within a dynamic program seeking to solve a Military Inventory Routing Problem with multiple-customer routes, stochastic supply, and deterministic demand. Also proposed is a suite of test problems for the Military Inventory Routing Problem

    Vehicle Routing Problem with Time Windows: An Evolutionary Algorithmic Approach

    Get PDF
    The Vehicle Routing Problem with Time Windows (VRPTW) is an important problem in logistics, which is an extension of well known Vehicle Routing Problem (VRP), with a central depot. The Objective is to design an optimal set of routes for serving a number of customers without violating the customer’s time window constraints and vehicle capacity constraint. It has received considerable attention in recent years. This paper reviews the research on Evolutionary Algorithms for VRPTW. The main types of evolutionary algorithms for the VRPTW are Genetic Algorithms and Evolutionary Strategies which may also be described as Evolutionary metaheuristics to distinguish them from other metaheuristics. Along with these evolutionary metaheuristics, this paper reviews heuristic search methods that hybridize ideas of evolutionary algorithms with some other search technique, such as tabu search, guided local search, route construction heuristics, ejection chain approach, adaptive large neighborhood search, variable neighborhood search and hierarchal tournament selection. In addition to the basic features of each method, experimental results for the 56 benchmark problem with 100 customers of Solomon (1987) and Gehring and Homberger (1999) are presented and analyzed
    • …
    corecore