1,002 research outputs found

    Engineering model transformations with transML

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007%2Fs10270-011-0211-2Model transformation is one of the pillars of model-driven engineering (MDE). The increasing complexity of systems and modelling languages has dramatically raised the complexity and size of model transformations as well. Even though many transformation languages and tools have been proposed in the last few years, most of them are directed to the implementation phase of transformation development. In this way, even though transformations should be built using sound engineering principles—just like any other kind of software—there is currently a lack of cohesive support for the other phases of the transformation development, like requirements, analysis, design and testing. In this paper, we propose a unified family of languages to cover the life cycle of transformation development enabling the engineering of transformations. Moreover, following an MDE approach, we provide tools to partially automate the progressive refinement of models between the different phases and the generation of code for several transformation implementation languages.This work has been sponsored by the Spanish Ministry of Science and Innovation with project METEORIC (TIN2008-02081), and by the R&D program of the Community of Madrid with projects “e-Madrid" (S2009/TIC-1650). Parts of this work were done during the research stays of Esther and Juan at the University of York, with financial support from the Spanish Ministry of Science and Innovation (grant refs. JC2009-00015, PR2009-0019 and PR2008-0185)

    transML: A Family of Languages to Model Model Transformations

    Get PDF
    Proceedings of: 13th International Conference on Model Driven Engineering Languages and Systems, MODELS 2010, Oslo, Norway, October 3-8, 2010Model transformation is one of the pillars of Model-Driven Engineering (MDE). The increasing complexity of systems and modelling languages has dramatically raised the complexity and size of model transformations. Even though many transformation languages and tools have been proposed in the last few years, most of them are directed to the implementation phase of transformation development. However, there is a lack of cohesive support for the other phases of the transformation development, like requirements, analysis, design and testing. In this paper, we propose a unified family of languages to cover the life-cycle of transformation development. Moreover, following an MDE approach, we provide tools to partially automate the progressive refinement of models between the different phases and the generation of code for specific transformation implementation languages.Work funded by the Spanish Ministry of Science (project TIN2008-02081 and grants JC2009-00015,PR2009-0019), the R&Dprogramme of the Madrid Region (project S2009/TIC-1650), and the European Commission’s 7th Framework programme (grants #218575 (INESS), #248864 (MADES))

    Towards an Extensible Architecture and Tool Support for Model-based Verification.

    Get PDF
    Model-based software engineering (MBSE) brings models to the center of software and system design. Models are powerful abstractions used to support all phases of the software development life cycle of complex software. As these models grow larger and their complexity increases, they need to be verified and validated to preserve their correctness. One possible way to do so is by means of the use of formal methods. However, the availability of MBSE tools with support for validation and verification is limited, and they usually require the cumbersome deployment of software burdened by dependencies, preventing the adoption of these tools. This paper presents a web-based architecture designed to support the definition of domain models and provide translation capabilities to different verification formalisms. As a proof of concept for our architecture, we have developed a tool prototype that is light-weight, runs in the browser and supports: (i) definition of domain models represented as class diagrams and (ii) partial translation of class diagrams into the Alloy specification language, enabling verification of structural domain properties. We show how we have used this tool to verify properties for the public bus management system in the city of Málaga, Spain.This work was partially funded by Universidad de Málaga (Campus Internacional de Excelencia), and the Spanish Government under projects PID2021-125527NB-I00 and TED2021-130523B-I00. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore