168,600 research outputs found

    A virtual environment to support the distributed design of large made-to-order products

    Get PDF
    An overview of a virtual design environment (virtual platform) developed as part of the European Commission funded VRShips-ROPAX (VRS) project is presented. The main objectives for the development of the virtual platform are described, followed by the discussion of the techniques chosen to address the objectives, and finally a description of a use-case for the platform. Whilst the focus of the VRS virtual platform was to facilitate the design of ROPAX (roll-on passengers and cargo) vessels, the components within the platform are entirely generic and may be applied to the distributed design of any type of vessel, or other complex made-to-order products

    Soil Infrastructure, Interfaces & Translocation Processes in Inner Space (“Soil-it-is”): Towards a Road Map for the Constraints and Crossroads of Soil Architecture and Biophysical Processes

    Get PDF
    Soil functions and their impact on health, economy, and the environment are evident at the macro scale but determined at the micro scale, based on interactions between soil micro-architecture and the transport and transformation processes occurring in the soil infrastructure comprising pore and particle networks and at their interfaces. Soil structure formation and its resilience to disturbance are highly dynamic features affected by management (energy input), moisture (matric potential), and solids composition and complexation (organic matter and clay interactions). In this paper we review and put into perspective preliminary results of the newly started research program “Soil-it-is” on functional soil architecture. To identify and quantify biophysical constraints on soil structure changes and resilience, we claim that new approaches are needed to better interpret processes and parameters measured at the bulk soil scale and their links to the seemingly chaotic soil inner space behavior at the micro scale. As a first step, we revisit the soil matrix (solids phase) and pore system (water and air phases), constituting the complementary and interactive networks of soil infrastructure. For a field-pair with contrasting soil management, we suggest new ways of data analysis on measured soil-gas transport parameters at different moisture conditions to evaluate controls of soil matrix and pore network formation. Results imply that some soils form sponge-like pore networks (mostly healthy soils in terms of agricultural and environmental functions), while other soils form pipe-like structures (agriculturally poorly functioning soils), with the difference related to both complexation of organic matter and degradation of soil structure. The recently presented Dexter et al. (2008) threshold (ratio of clay to organic carbon of 10 kg kg-1) is found to be a promising constraint for a soil’s ability to maintain or regenerate functional structure. Next, we show the Dexter et al. (2008) threshold may also apply to hydrological and physical-chemical interface phenomena including soil-water repellency and sorption of volatile organic vapors (gas-water-solids interfaces) as well as polycyclic aromatic hydrocarbons (water-solids interfaces). However, data for differently-managed soils imply that energy input, soil-moisture status, and vegetation (quality of eluded organic matter) may be equally important constraints together with the complexation and degradation of organic carbon in deciding functional soil architecture and interface processes. Finally, we envision a road map to soil inner space where we search for the main controls of particle and pore network changes and structure build-up and resilience at each crossroad of biophysical parameters, where, for example, complexation between organic matter and clay, and moisture-induced changes from hydrophilic to hydrophobic surface conditions can play a role. We hypothesize that each crossroad (e.g. between organic carbon/clay ratio and matric potential) may control how soil self-organization will manifest itself at a given time as affected by gradients in energy and moisture from soil use and climate. The road map may serve as inspiration for renewed and multi-disciplinary focus on functional soil architecture

    Enabling Adaptive Grid Scheduling and Resource Management

    Get PDF
    Wider adoption of the Grid concept has led to an increasing amount of federated computational, storage and visualisation resources being available to scientists and researchers. Distributed and heterogeneous nature of these resources renders most of the legacy cluster monitoring and management approaches inappropriate, and poses new challenges in workflow scheduling on such systems. Effective resource utilisation monitoring and highly granular yet adaptive measurements are prerequisites for a more efficient Grid scheduler. We present a suite of measurement applications able to monitor per-process resource utilisation, and a customisable tool for emulating observed utilisation models. We also outline our future work on a predictive and probabilistic Grid scheduler. The research is undertaken as part of UK e-Science EPSRC sponsored project SO-GRM (Self-Organising Grid Resource Management) in cooperation with BT

    The "MIND" Scalable PIM Architecture

    Get PDF
    MIND (Memory, Intelligence, and Network Device) is an advanced parallel computer architecture for high performance computing and scalable embedded processing. It is a Processor-in-Memory (PIM) architecture integrating both DRAM bit cells and CMOS logic devices on the same silicon die. MIND is multicore with multiple memory/processor nodes on each chip and supports global shared memory across systems of MIND components. MIND is distinguished from other PIM architectures in that it incorporates mechanisms for efficient support of a global parallel execution model based on the semantics of message-driven multithreaded split-transaction processing. MIND is designed to operate either in conjunction with other conventional microprocessors or in standalone arrays of like devices. It also incorporates mechanisms for fault tolerance, real time execution, and active power management. This paper describes the major elements and operational methods of the MIND architecture

    Design of an integrated airframe/propulsion control system architecture

    Get PDF
    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture

    An overview of the VRS virtual platform

    Get PDF
    This paper provides an overview of the development of the virtual platform within the European Commission funded VRShips-ROPAX (VRS) project. This project is a major collaboration of approximately 40 industrial, regulatory, consultancy and academic partners with the objective of producing two novel platforms. A physical platform will be designed and produced representing a scale model of a novel ROPAX vessel with the following criteria: 2000 passengers; 400 cabins; 2000 nautical mile range, and a service speed of 38 knots. The aim of the virtual platform is to demonstrate that vessels may be designed to meet these criteria, which was not previously possible using individual tools and conventional design approaches. To achieve this objective requires the integration of design and simulation tools representing concept, embodiment, detail, production, and operation life-phases into the virtual platform, to enable distributed design activity to be undertaken. The main objectives for the development of the virtual platform are described, followed by the discussion of the techniques chosen to address the objectives, and finally a description of a use-case for the platform. Whilst the focus of the VRS virtual platform was to facilitate the design of ROPAX vessels, the components within the platform are entirely generic and may be applied to the distributed design of any type of vessel, or other complex made-to-order products

    Collaborative Engineering Environments. Two Examples of Process Improvement

    Get PDF
    Companies are recognising that innovative processes are determining factors in competitiveness. Two examples from projects in aircraft development describe the introduction of collaborative engineering environments as a way to improve engineering processes. A multi-disciplinary simulation environment integrates models from all disciplines involved in a common functional structure. Quick configuration for specific design problems and powerful feedback / visualisation capabilities enable engineering teams to concentrate on the integrated behaviour of the design. An engineering process management system allows engineering teams to work concurrently in tasks, following a defined flow of activities, applying tools on a shared database. Automated management of workspaces including data consistency enables engineering teams to concentrate on the design activities. The huge amount of experience in companies must be transformed for effective application in engineering processes. Compatible concepts, notations and implementation platforms make tangible knowledge like models and algorithms accessible. Computer-based design management makes knowledge on engineering processes and methods explicit
    • …
    corecore