732 research outputs found

    The Simulation Model Partitioning Problem: an Adaptive Solution Based on Self-Clustering (Extended Version)

    Full text link
    This paper is about partitioning in parallel and distributed simulation. That means decomposing the simulation model into a numberof components and to properly allocate them on the execution units. An adaptive solution based on self-clustering, that considers both communication reduction and computational load-balancing, is proposed. The implementation of the proposed mechanism is tested using a simulation model that is challenging both in terms of structure and dynamicity. Various configurations of the simulation model and the execution environment have been considered. The obtained performance results are analyzed using a reference cost model. The results demonstrate that the proposed approach is promising and that it can reduce the simulation execution time in both parallel and distributed architectures

    Approaching simulation to modelers: a user interface for large-scale demographic simulation

    Get PDF
    Extended version / Versió extesaAgent-based modeling is one of the promising modeling tools that can be used in the study of population dynamics. Two of the main obstacles hindering the use of agent-based simulation in practice are its scalability when the analysis requires large-scale models such as policy studies, and its ease-of-use especially for users with no programming experience. While there has been a significant work on the scalability issue, ease-of-use aspect has not been addressed in the same intensity. This paper presents a graphical user interface designed for a simulation tool which allows modelers with no programming background to specify agent-based demographic models and run them on parallel environments. The interface eases the definition of models to describe individual and group dynamics processes with both qualitative and quantitative data. The main advantage is to allow users to transparently run the models on high performance computing infrastructures.Postprint (author's final draft

    Swarming Reconnaissance Using Unmanned Aerial Vehicles in a Parallel Discrete Event Simulation

    Get PDF
    Current military affairs indicate that future military warfare requires safer, more accurate, and more fault-tolerant weapons systems. Unmanned Aerial Vehicles (UAV) are one answer to this military requirement. Technology in the UAV arena is moving toward smaller and more capable systems and is becoming available at a fraction of the cost. Exploiting the advances in these miniaturized flying vehicles is the aim of this research. How are the UAVs employed for the future military? The concept of operations for a micro-UAV system is adopted from nature from the appearance of flocking birds, movement of a school of fish, and swarming bees among others. All of these natural phenomena have a common thread: a global action resulting from many small individual actions. This emergent behavior is the aggregate result of many simple interactions occurring within the flock, school, or swarm. In a similar manner, a more robust weapon system uses emergent behavior resulting in no weakest link because the system itself is made up of simple interactions by hundreds or thousands of homogeneous UAVs. The global system in this research is referred to as a swarm. Losing one or a few individual unmanned vehicles would not dramatically impact the swarms ability to complete the mission or cause harm to any human operator. Swarming reconnaissance is the emergent behavior of swarms to perform a reconnaissance operation. An in-depth look at the design of a reconnaissance swarming mission is studied. A taxonomy of passive reconnaissance applications is developed to address feasibility. Evaluation of algorithms for swarm movement, communication, sensor input/analysis, targeting, and network topology result in priorities of each model\u27s desired features. After a thorough selection process of available implementations, a subset of those models are integrated and built upon resulting in a simulation that explores the innovations of swarming UAVs

    Ubiquitous Computing and Distributed Agent-based Simulation

    Get PDF
    Abstract-As much as ubiquitous computing systems are already claimed to exist in the real world, further development of these systems still pose challenges to computer science that are still quite beyond the state of the art. Two challenges stand out in particular: the complexity of next-generation ubiquitous computing systems, and their inherent scalability issues. This paper aims to establish that agent-based modelling provides a powerful tool in tackling these issues. As an example of a practical solution, readily available, this paper highlights the distributed agent-based simulation infrastructure PDES-MAS as particularly suited for the task. Using the PDES-MAS infrastructure, designers, developers, and builders of next-generation ubiquitous computing systems can, through an iterative agent-based simulation process, gain the required knowledge and information about these systems, without having precede to deployment of the system itself

    Automatic Algorithm Selection for Complex Simulation Problems

    Get PDF
    To select the most suitable simulation algorithm for a given task is often difficult. This is due to intricate interactions between model features, implementation details, and runtime environment, which may strongly affect the overall performance. The thesis consists of three parts. The first part surveys existing approaches to solve the algorithm selection problem and discusses techniques to analyze simulation algorithm performance.The second part introduces a software framework for automatic simulation algorithm selection, which is evaluated in the third part.Die Auswahl des passendsten Simulationsalgorithmus für eine bestimmte Aufgabe ist oftmals schwierig. Dies liegt an der komplexen Interaktion zwischen Modelleigenschaften, Implementierungsdetails und Laufzeitumgebung. Die Arbeit ist in drei Teile gegliedert. Der erste Teil befasst sich eingehend mit Vorarbeiten zur automatischen Algorithmenauswahl, sowie mit der Leistungsanalyse von Simulationsalgorithmen. Der zweite Teil der Arbeit stellt ein Rahmenwerk zur automatischen Auswahl von Simulationsalgorithmen vor, welches dann im dritten Teil evaluiert wird

    New Concepts for Virtual Testbeds : Data Mining Algorithms for Blackbox Optimization based on Wait-Free Concurrency and Generative Simulation

    Get PDF
    Virtual testbeds have emerged as a key technology for improving and streamlining complex engineering processes by delivering long-term simulation and assessment of complex designs in virtual environments. In contrast to existing simulation technology, virtual testbeds focus on long-term physically-based simulation of the overall design in its (virtual) environment instead of only focussing on isolated, specific parts for short periods of time. This technology has the major advantage that costly testing, prototyping, and assessment in real-life environments are replaced by a cost-efficient simulation in virtual worlds for comprehensive and long-term analysis of designs. For this purpose, engineering models and their requirements are abstracted into software simulation models and objectives which are executed in virtual assessments. Simulation models are used to predict complex, real systems which can be further a subject to random influences. These predictions are used to examine the effects of individual configuration alternatives without actually realizing them and causing possible negative effects on the real system. Virtual testbeds further offer engineers the opportunity to immersively and naturally interact with their simulation model in these virtual assessments. This enables a greater and comprehensive understanding of possible design flaws early-on in the design process for engineers because they can directly assess their design in the virtual environment, based on the simulation objectives. The fact that virtual testbeds enable these realtime interactive virtual assessments, makes their underlying software infrastructure very complex. One major challenge is to minimize the development time of virtual testbeds in order to efficiently integrate them into the overall engineering process. Usually, this can be achieved by minimizing the underlying concurrency of the testbed and by simplifying its software architecture. However, this may result in a degradation of their very concurrent and asynchronous behavior, which is usually required for immersive and natural virtual interaction. A major goal of virtual testbeds in the engineering process is to find a set of optimal configurations of the simulation model which maximizes all simulation objectives for the specified virtual assessments. Once such a set has been computed, engineers can interactively explore it in the virtual environment. The main challenge is that sophisticated simulation models and their configuration are subject to a multiobjective optimization problem, which usually can not be solved manually by engineers or simulation analysts in feasible time. This is further aggravated because the relationships between simulation model configurations and simulation objectives are mostly unknown, leading to what is known as blackbox simulations. In this thesis, I propose novel data mining algorithms for computing Pareto optimal simulation model configurations, based on an approximation of the feasible design space, for deterministic and stochastic blackbox simulations in virtual testbeds for achieving above stated goal. These novel data mining algorithms lead to an automatic knowledge discovery process that does not need any supervision for its data analysis and assessment for multiobjective optimization problems of simulation model configurations. This achieves the previously stated goal of computing optimal configurations of simulation models for long-term simulations and assessments. Furthermore, I propose two complementary solutions for efficiently integrating massively-parallel virtual testbeds into engineering processes. First, I propose a novel multiversion wait-free data and concurrency management based on hash maps. These wait-free hash maps do not require any standard locking mechanisms and enable low-latency data generation, management and distribution for massively-parallel applications. Second, I propose novel concepts for efficiently code generating above wait-free data and concurrency management for arbitrary massively-parallel simulation applications of virtual testbeds. My generative simulation concept combines a state-of-the-art realtime interactive system design pattern for high maintainability with template code generation based on domain specific modelling. This concept is able to generate massively-parallel simulations and, at the same time, model checks its internal dataflow for possible interface errors. These generative concept overcomes the challenge of efficiently integrating virtual testbeds into engineering processes. These contributions enable for the first time a powerful collaboration between simulation, optimization, visualization and data analysis for novel virtual testbed applications but also overcome and achieve the presented challenges and goals

    Managing Bandwidth and Traffic via Bundling and Filtration in Large-Scale Distributed Simulations

    Get PDF
    Research has shown that bandwidth can be a limiting factor in the performance of distributed simulations. The Air Force\u27s Distributed Mission Operations Center (DMOC) periodically hosts one of the largest distributed simulation events in the world. The engineers at the DMOC have dealt with the difficult problem of limited bandwidth by implementing application level filters that process all DIS PDUs between the various networks connected to the exercise. This thesis examines their implemented filter and proposes: adaptive range-based filtering and bundling together of PDUs. The goals are to reduce the number of PDUs passed by the adaptive filter and to reduce network overhead and the total amount of data transferred by maximizing packet size up to the MTU. The proposed changes were implemented and logged data from previous events were used on a test network in order to measure the improvement from the base filter to the improved filter. The results showed that the adaptive range based filter was effective, though minimally so, and that the PDU bundling resulted in a reduction of 17% to 20% of the total traffic transmitted across the network
    corecore