149 research outputs found

    10241 Abstracts Collection -- Information Visualization

    Get PDF
    From 13.06.10 to 18.06.10, the Dagstuhl Seminar 10241 ``Information Visualization \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Blending the Material and Digital World for Hybrid Interfaces

    Get PDF
    The development of digital technologies in the 21st century is progressing continuously and new device classes such as tablets, smartphones or smartwatches are finding their way into our everyday lives. However, this development also poses problems, as these prevailing touch and gestural interfaces often lack tangibility, take little account of haptic qualities and therefore require full attention from their users. Compared to traditional tools and analog interfaces, the human skills to experience and manipulate material in its natural environment and context remain unexploited. To combine the best of both, a key question is how it is possible to blend the material world and digital world to design and realize novel hybrid interfaces in a meaningful way. Research on Tangible User Interfaces (TUIs) investigates the coupling between physical objects and virtual data. In contrast, hybrid interfaces, which specifically aim to digitally enrich analog artifacts of everyday work, have not yet been sufficiently researched and systematically discussed. Therefore, this doctoral thesis rethinks how user interfaces can provide useful digital functionality while maintaining their physical properties and familiar patterns of use in the real world. However, the development of such hybrid interfaces raises overarching research questions about the design: Which kind of physical interfaces are worth exploring? What type of digital enhancement will improve existing interfaces? How can hybrid interfaces retain their physical properties while enabling new digital functions? What are suitable methods to explore different design? And how to support technology-enthusiast users in prototyping? For a systematic investigation, the thesis builds on a design-oriented, exploratory and iterative development process using digital fabrication methods and novel materials. As a main contribution, four specific research projects are presented that apply and discuss different visual and interactive augmentation principles along real-world applications. The applications range from digitally-enhanced paper, interactive cords over visual watch strap extensions to novel prototyping tools for smart garments. While almost all of them integrate visual feedback and haptic input, none of them are built on rigid, rectangular pixel screens or use standard input modalities, as they all aim to reveal new design approaches. The dissertation shows how valuable it can be to rethink familiar, analog applications while thoughtfully extending them digitally. Finally, this thesis’ extensive work of engineering versatile research platforms is accompanied by overarching conceptual work, user evaluations and technical experiments, as well as literature reviews.Die Durchdringung digitaler Technologien im 21. Jahrhundert schreitet stetig voran und neue Geräteklassen wie Tablets, Smartphones oder Smartwatches erobern unseren Alltag. Diese Entwicklung birgt aber auch Probleme, denn die vorherrschenden berührungsempfindlichen Oberflächen berücksichtigen kaum haptische Qualitäten und erfordern daher die volle Aufmerksamkeit ihrer Nutzer:innen. Im Vergleich zu traditionellen Werkzeugen und analogen Schnittstellen bleiben die menschlichen Fähigkeiten ungenutzt, die Umwelt mit allen Sinnen zu begreifen und wahrzunehmen. Um das Beste aus beiden Welten zu vereinen, stellt sich daher die Frage, wie neuartige hybride Schnittstellen sinnvoll gestaltet und realisiert werden können, um die materielle und die digitale Welt zu verschmelzen. In der Forschung zu Tangible User Interfaces (TUIs) wird die Verbindung zwischen physischen Objekten und virtuellen Daten untersucht. Noch nicht ausreichend erforscht wurden hingegen hybride Schnittstellen, die speziell darauf abzielen, physische Gegenstände des Alltags digital zu erweitern und anhand geeigneter Designparameter und Entwurfsräume systematisch zu untersuchen. In dieser Dissertation wird daher untersucht, wie Materialität und Digitalität nahtlos ineinander übergehen können. Es soll erforscht werden, wie künftige Benutzungsschnittstellen nützliche digitale Funktionen bereitstellen können, ohne ihre physischen Eigenschaften und vertrauten Nutzungsmuster in der realen Welt zu verlieren. Die Entwicklung solcher hybriden Ansätze wirft jedoch übergreifende Forschungsfragen zum Design auf: Welche Arten von physischen Schnittstellen sind es wert, betrachtet zu werden? Welche Art von digitaler Erweiterung verbessert das Bestehende? Wie können hybride Konzepte ihre physischen Eigenschaften beibehalten und gleichzeitig neue digitale Funktionen ermöglichen? Was sind geeignete Methoden, um verschiedene Designs zu erforschen? Wie kann man Technologiebegeisterte bei der Erstellung von Prototypen unterstützen? Für eine systematische Untersuchung stützt sich die Arbeit auf einen designorientierten, explorativen und iterativen Entwicklungsprozess unter Verwendung digitaler Fabrikationsmethoden und neuartiger Materialien. Im Hauptteil werden vier Forschungsprojekte vorgestellt, die verschiedene visuelle und interaktive Prinzipien entlang realer Anwendungen diskutieren. Die Szenarien reichen von digital angereichertem Papier, interaktiven Kordeln über visuelle Erweiterungen von Uhrarmbändern bis hin zu neuartigen Prototyping-Tools für intelligente Kleidungsstücke. Um neue Designansätze aufzuzeigen, integrieren nahezu alle visuelles Feedback und haptische Eingaben, um Alternativen zu Standard-Eingabemodalitäten auf starren Pixelbildschirmen zu schaffen. Die Dissertation hat gezeigt, wie wertvoll es sein kann, bekannte, analoge Anwendungen zu überdenken und sie dabei gleichzeitig mit Bedacht digital zu erweitern. Dabei umfasst die vorliegende Arbeit sowohl realisierte technische Forschungsplattformen als auch übergreifende konzeptionelle Arbeiten, Nutzerstudien und technische Experimente sowie die Analyse existierender Forschungsarbeiten

    An empirical investigation of gaze selection in mid-air gestural 3D manipulation

    Get PDF
    In this work, we investigate gaze selection in the context of mid-air hand gestural manipulation of 3D rigid bodies on monoscopic displays. We present the results of a user study with 12 participants in which we compared the performance of Gaze, a Raycasting technique (2D Cursor) and a Virtual Hand technique (3D Cursor) to select objects in two 3D mid-air interaction tasks. Also, we compared selection confirmation times for Gaze selection when selection is followed by manipulation to when it is not. Our results show that gaze selection is faster and more preferred than 2D and 3D mid-air-controlled cursors, and is particularly well suited for tasks in which users constantly switch between several objects during the manipulation. Further, selection confirmation times are longer when selection is followed by manipulation than when it is not

    Can Gaze Beat Touch? A Fitts' Law Evaluation of Gaze, Touch, and Mouse Inputs

    Full text link
    Gaze input has been a promising substitute for mouse input for point and select interactions. Individuals with severe motor and speech disabilities primarily rely on gaze input for communication. Gaze input also serves as a hands-free input modality in the scenarios of situationally-induced impairments and disabilities (SIIDs). Hence, the performance of gaze input has often been compared to mouse input through standardized performance evaluation procedure like the Fitts' Law. With the proliferation of touch-enabled devices such as smartphones, tablet PCs, or any computing device with a touch surface, it is also important to compare the performance of gaze input to touch input. In this study, we conducted ISO 9241-9 Fitts' Law evaluation to compare the performance of multimodal gaze and foot-based input to touch input in a standard desktop environment, while using mouse input as the baseline. From a study involving 12 participants, we found that the gaze input has the lowest throughput (2.55 bits/s), and the highest movement time (1.04 s) of the three inputs. In addition, though touch input involves maximum physical movements, it achieved the highest throughput (6.67 bits/s), the least movement time (0.5 s), and was the most preferred input. While there are similarities in how quickly pointing can be moved from source to target location when using both gaze and touch inputs, target selection consumes maximum time with gaze input. Hence, with a throughput that is over 160% higher than gaze, touch proves to be a superior input modality

    Phrasing Bimanual Interaction for Visual Design

    Get PDF
    Architects and other visual thinkers create external representations of their ideas to support early-stage design. They compose visual imagery with sketching to form abstract diagrams as representations. When working with digital media, they apply various visual operations to transform representations, often engaging in complex sequences. This research investigates how to build interactive capabilities to support designers in putting together, that is phrasing, sequences of operations using both hands. In particular, we examine how phrasing interactions with pen and multi-touch input can support modal switching among different visual operations that in many commercial design tools require using menus and tool palettes—techniques originally designed for the mouse, not pen and touch. We develop an interactive bimanual pen+touch diagramming environment and study its use in landscape architecture design studio education. We observe interesting forms of interaction that emerge, and how our bimanual interaction techniques support visual design processes. Based on the needs of architects, we develop LayerFish, a new bimanual technique for layering overlapping content. We conduct a controlled experiment to evaluate its efficacy. We explore the use of wearables to identify which user, and distinguish what hand, is touching to support phrasing together direct-touch interactions on large displays. From design and development of the environment and both field and controlled studies, we derive a set methods, based upon human bimanual specialization theory, for phrasing modal operations through bimanual interactions without menus or tool palettes

    Impact of universal design ballot interfaces on voting performance and satisfaction of people with and without vision loss

    Get PDF
    Since the Help America Vote Act (HAVA) in 2002 that addressed improvements to voting systems and voter access through the use of electronic technologies, electronic voting systems have improved in U.S. elections. However, voters with disabilities have been disappointed and frustrated, because they have not been able to vote privately and independently (Runyan, 2007). Voting accessibility for individuals with disabilities has generally been accomplished through specialized designs, providing the addition of alternative inputs (e.g., headphones with tactile keypad for audio output, sip-and-puff) and outputs (e.g., audio output) to existing hardware and/or software architecture. However, while the add-on features may technically be accessible, they are often complex and difficult for poll workers to set up and require more time for targeted voters with disabilities to use compared to the direct touch that enable voters without disabilities to select any candidate in a particular contest at any time. To address the complexities and inequities with the accessible alternatives, a universal design (UD) approach was used to design two experimental ballot interfaces, namely EZ Ballot and QUICK Ballot, that seamlessly integrate accessible features (e.g., audio output) based on the goal of designing one voting system for all. EZ Ballot presents information linearly (i.e., one candidate’s name at a time) and voters can choose Yes or No inputs that does not require search (i.e., finding a particular name). QUICK Ballot presents multiple names that allow users to choose a name using direct-touch or gesture-touch interactions (e.g., the drag and lift gesture). Despite the same goal of providing one type of voting system for all voters, each ballot has a unique selection and navigation process designed to facilitate access and participation in voting. Thus, my proposed research plan was to examine the effectiveness of the two UD ballots primarily with respect to their different ballot structures in facilitating voting performance and satisfaction for people with a range of visual abilities including those with blindness or vision loss. The findings from this work show that voters with a range of visual abilities were able to use both ballots independently. However, as expected, the voter performance and preferences of each ballot interface differed by voters through the range of visual abilities. While non-sighted voters made fewer errors on the linear ballot (EZ Ballot), partially-sighted and sighted voters completed the random access ballot (QUICK Ballot) in less time. In addition, a higher percentage of non-sighted participants preferred the linear ballot, and a higher percentage of sighted participants preferred the random ballot. The main contributions of this work are in: 1) utilizing UD principles to design ballot interfaces that can be differentially usable by voters with a range of abilities; 2) demonstrating the feasibility of two UD ballot interfaces by voters with a range of visual abilities; 3) providing an impact for people with a range of visual abilities on other applications. The study suggests that the two ballots, both designed according to UD principles but with different weighting of principles, can be differentially usable by individuals with a range of visual abilities. This approach clearly distinguishes this work from previous efforts, which have focused on developing one UD solution for everyone because UD does not dictate a single solution for everyone (e.g., a one-size-fits-all approach), but rather supports flexibility in use that provide a new perspective into human-computer interaction (Stephanidis, 2001).Ph.D

    Interaction for Immersive Analytics

    Get PDF
    International audienceIn this chapter, we briefly review the development of natural user interfaces and discuss their role in providing human-computer interaction that is immersive in various ways. Then we examine some opportunities for how these technologies might be used to better support data analysis tasks. Specifically, we review and suggest some interaction design guidelines for immersive analytics. We also review some hardware setups for data visualization that are already archetypal. Finally, we look at some emerging system designs that suggest future directions

    I-SEARCH: a unified framework for multimodal search and retrieval

    Get PDF
    In this article, a unified framework for multimodal search and retrieval is introduced. The framework is an outcome of the research that took place within the I-SEARCH European Project. The proposed system covers all aspects of a search and retrieval process, namely low-level descriptor extraction, indexing, query formulation, retrieval and visualisation of the search results. All I-SEARCH components advance the state of the art in the corresponding scientific fields. The I-SEARCH multimodal search engine is dynamically adapted to end-user's devices, which can vary from a simple mobile phone to a high-performance PC
    • …
    corecore