15,213 research outputs found

    A 3D immersive discrete event simulator for enabling prototyping of factory layouts

    Get PDF
    There is an increasing need to eliminate wasted time and money during factory layout design and subsequent construction. It is presently difficult for engineers to foresee if a certain layout is optimal for work and material flows. By exploiting modelling, simulation and visualisation techniques, this paper presents a tool concept called immersive WITNESS that combines the modelling strengths of Discrete Event Simulation (DES) with the 3D visualisation strengths of recent 3D low cost gaming technology to enable decision makers make informed design choices for future factories layouts. The tool enables engineers to receive immediate feedback on their design choices. Our results show that this tool has the potential to reduce rework as well as the associated costs of making physical prototypes

    Grid infrastructures for the electronics domain: requirements and early prototypes from an EPSRC pilot project

    Get PDF
    The fundamental challenges facing future electronics design is to address the decreasing – atomistic - scale of transistor devices and to understand and predict the impact and statistical variability these have on design of circuits and systems. The EPSRC pilot project “Meeting the Design Challenges of nanoCMOS Electronics” (nanoCMOS) which began in October 2006 has been funded to explore this space. This paper outlines the key requirements that need to be addressed for Grid technology to support the various research strands in this domain, and shows early prototypes demonstrating how these requirements are being addressed

    Grid simulation services for the medical community

    No full text
    The first part of this paper presents a selection of medical simulation applications, including image reconstruction, near real-time registration for neuro-surgery, enhanced dose distribution calculation for radio-therapy, inhaled drug delivery prediction, plastic surgery planning and cardio-vascular system simulation. The latter two topics are discussed in some detail. In the second part, we show how such services can be made available to the clinical practitioner using Grid technology. We discuss the developments and experience made during the EU project GEMSS, which provides reliable, efficient, secure and lawful medical Grid services

    Bipartite electronic SLA as a business framework to support cross-organization load management of real-time online applications

    No full text
    Online applications such as games and e-learning applications fall within the broader category of real-time online interactive applications (ROIA), a new class of ‘killer’ application for the Grid that is being investigated in the edutain@grid project. The two case studies in edutain@grid are an online game and an e-learning training application. We present a novel Grid-based business framework that makes use of bipartite service level agreements (SLAs) and dynamic invoice models to model complex business relationships in a massively scalable and flexible way. We support cross-organization load management at the business level, through zone migration. For evaluation we look at existing and extended value chains, the quality of service (QoS) metrics measured and the dynamic invoice models that support this work. We examine the causal links from customer quality of experience (QoE) and service provider quality of business (QoBiz) through to measured quality of service. Finally we discuss a shared reward business ecosystem and suggest how extended service level agreements and invoice models can support this

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    Opnet, Arne, and the Classroom

    Get PDF
    This paper examines OPNET Technology, Inc\u27s management programs, and Regis University\u27s Academic Research Network (ARNe) needs to find out which OPNET programs can meet the needs of ARNe. The method used was to examine ARNe\u27s needs, and research Microsoft\u27s SMF/MOF management framework, research OPNET\u27s program and module offerings, research OPNET\u27s University Program, and research how OPNET\u27s programs are used at some other universities. The research was used to create a match up between Microsoft\u27s Service Management Functions and OPNET\u27s programs and modules. And it was used to create a list of textbooks, labs, and lab manuals that would work with OPNET\u27s IT Guru and Modeler in a classroom to help teach networking theory. The examination was combined with the research to create an evaluation criteria matrix from which project recommendations could be drawn. The conclusion was that the following OPNET Technology programs and modules could be of benefit to Regis University\u27s ARNe - ACE, Automation module, Commander, DAC module, Flow Analysis module, IT Sentinel, IT Guru, NetDoctor, Report Server, and VNE Server

    Modeling the Internet of Things: a simulation perspective

    Full text link
    This paper deals with the problem of properly simulating the Internet of Things (IoT). Simulating an IoT allows evaluating strategies that can be employed to deploy smart services over different kinds of territories. However, the heterogeneity of scenarios seriously complicates this task. This imposes the use of sophisticated modeling and simulation techniques. We discuss novel approaches for the provision of scalable simulation scenarios, that enable the real-time execution of massively populated IoT environments. Attention is given to novel hybrid and multi-level simulation techniques that, when combined with agent-based, adaptive Parallel and Distributed Simulation (PADS) approaches, can provide means to perform highly detailed simulations on demand. To support this claim, we detail a use case concerned with the simulation of vehicular transportation systems.Comment: Proceedings of the IEEE 2017 International Conference on High Performance Computing and Simulation (HPCS 2017
    • 

    corecore