36 research outputs found

    Algorithms and Circuits for Analog-Digital Hybrid Multibeam Arrays

    Get PDF
    Fifth generation (5G) and beyond wireless communication systems will rely heavily on larger antenna arrays combined with beamforming to mitigate the high free-space path-loss that prevails in millimeter-wave (mmW) and above frequencies. Sharp beams that can support wide bandwidths are desired both at the transmitter and the receiver to leverage the glut of bandwidth available at these frequency bands. Further, multiple simultaneous sharp beams are imperative for such systems to exploit mmW/sub-THz wireless channels using multiple reflected paths simultaneously. Therefore, multibeam antenna arrays that can support wider bandwidths are a key enabler for 5G and beyond systems. In general, N-beam systems using N-element antenna arrays will involve circuit complexities of the order of N2. This dissertation investigates new analog, digital and hybrid low complexity multibeam beamforming algorithms and circuits for reducing the associated high size, weight, and power (SWaP) complexities in larger multibeam arrays. The research efforts on the digital beamforming aspect propose the use of a new class of discrete Fourier transform (DFT) approximations for multibeam generation to eliminate the need for digital multipliers in the beamforming circuitry. For this, 8-, 16- and 32-beam multiplierless multibeam algorithms have been proposed for uniform linear array applications. A 2.4 GHz 16-element array receiver setup and a 5.8 GHz 32-element array receiver system which use field programmable gate arrays (FPGAs) as digital backend have been built for real-time experimental verification of the digital multiplierless algorithms. The multiplierless algorithms have been experimentally verified by digitally measuring beams. It has been shown that the measured beams from the multiplierless algorithms are in good agreement with the exact counterpart algorithms. Analog realizations of the proposed approximate DFT transforms have also been investigated leading to low-complex, high bandwidth circuits in CMOS. Further, a novel approach for reducing the circuit complexity of analog true-time delay (TTD) N-beam beamforming networks using N-element arrays has been proposed for wideband squint-free operation. A sparse factorization of the N-beam delay Vandermonde beamforming matrix is used to reduce the total amount of TTD elements that are needed for obtaining N number of beams in a wideband array. The method has been verified using measured responses of CMOS all-pass filters (APFs). The wideband squint-free multibeam algorithm is also used to propose a new low-complexity hybrid beamforming architecture targeting future 5G mmW systems. Apart from that, the dissertation also explores multibeam beamforming architectures for uniform circular arrays (UCAs). An algorithm having N log N circuit complexity for simultaneous generation of N-beams in an N-element UCA is explored and verified

    Adaptive beamforming using frequency invariant uniform concentric circular arrays

    Get PDF
    This paper proposes new adaptive beamforming algorithms for a class of uniform concentric circular arrays (UCCAs) having near-frequency invariant characteristics. The basic principle of the UCCA frequency invariant beamformer (FIB) is to transform the received signals to the phase mode representation and remove the frequency dependence of individual phase modes through the use of a digital beamforming or compensation network. As a result, the far field pattern of the array is electronic steerable and is approximately invariant over a wider range of frequencies than the uniform circular arrays (UCAs). The beampattern is governed by a small set of variable beamformer weights. Based on the minimum variance distortionless response (MVDR) and generalized sidelobe canceller (GSC) methods, new recursive adaptive beamforming algorithms for UCCA-FIB are proposed. In addition, robust versions of these adaptive beamforming algorithms for mitigating direction-of-arrival (DOA) and sensor position errors are developed. Simulation results show that the proposed adaptive UCCA-FIBs converge much faster and reach a considerable lower steady-state error than conventional broadband UCCA beamformers without using the compensation network. Since fewer variable multipliers are required in the proposed algorithms, it also leads to lower arithmetic complexity and faster tracking performance than conventional methods. © 2007 IEEE.published_or_final_versio

    Design and Realization of Fully-digital Microwave and Mm-wave Multi-beam Arrays with FPGA/RF-SOC Signal Processing

    Get PDF
    There has been a constant increase in data-traffic and device-connections in mobile wireless communications, which led the fifth generation (5G) implementations to exploit mm-wave bands at 24/28 GHz. The next-generation wireless access point (6G and beyond) will need to adopt large-scale transceiver arrays with a combination of multi-input-multi-output (MIMO) theory and fully digital multi-beam beamforming. The resulting high gain array factors will overcome the high path losses at mm-wave bands, and the simultaneous multi-beams will exploit the multi-directional channels due to multi-path effects and improve the signal-to-noise ratio. Such access points will be based on electronic systems which heavily depend on the integration of RF electronics with digital signal processing performed in Field programmable gate arrays (FPGA)/ RF-system-on-chip (SoC). This dissertation is directed towards the investigation and realization of fully-digital phased arrays that can produce wideband simultaneous multi-beams with FPGA or RF-SoC digital back-ends. The first proposed approach is a spatial bandpass (SBP) IIR filter-based beamformer, and is based on the concepts of space-time network resonance. A 2.4 GHz, 16-element array receiver, has been built for real-time experimental verification of this approach. The second and third approaches are respectively based on Discrete Fourier Transform (DFT) theory, and a lens plus focal planar array theory. Lens based approach is essentially an analog model of DFT. These two approaches are verified for a 28 GHz 800 MHz mm-wave implementation with RF-SoC as the digital back-end. It has been shown that for all proposed multibeam beamformer implementations, the measured beams are well aligned with those of the simulated. The proposed approaches differ in terms of their architectures, hardware complexity and costs, which will be discussed as this dissertation opens up. This dissertation also presents an application of multi-beam approaches for RF directional sensing applications to explore white spaces within the spatio-temporal spectral regions. A real-time directional sensing system is proposed to capture the white spaces within the 2.4 GHz Wi-Fi band. Further, this dissertation investigates the effect of electro-magnetic (EM) mutual coupling in antenna arrays on the real-time performance of fully-digital transceivers. Different algorithms are proposed to uncouple the mutual coupling in digital domain. The first one is based on finding the MC transfer function from the measured S-parameters of the antenna array and employing it in a Frost FIR filter in the beamforming backend. The second proposed method uses fast algorithms to realize the inverse of mutual coupling matrix via tridiagonal Toeplitz matrices having sparse factors. A 5.8 GHz 32-element array and 1-7 GHz 7-element tightly coupled dipole array (TCDA) have been employed to demonstrate the proof-of-concept of these algorithms

    Broadband, ultra-sparse array processing for low complexity multibeam sonar imaging

    Get PDF
    Imaging sonar systems have become increasingly popular in numerous applications associated with underwater imaging. Though multibeam sonar systems have been used in a variety of applications, the cost of these systems limits their use. The reason for the high costs has been identified to the use of large number of hydrophone array elements and hence large number of associated analogue channels and analogue-to-digital converters (ADC) that are required in high resolution imaging. In this thesis, an imaging sonar system has been developed with as few as four array elements to minimise cost. The inter-element spacing between any two array elements was chosen to be much greater than half the wavelength. In order to avoid phase ambiguity associated with wide array element spacing, the time difference of arrival is determined. Hence, for this purpose a wideband chirp signal was used. The return signals were divided into range cells to determine the target range. The time difference of arrival was obtained by correlating the range cells. Using the time difference of arrival, the direction of arrival (DOA) angle was calculated. The image of the target being illuminated was formed using the calculated range and the DOA values. The image pixel intensity at any pixel position was determined from the correlation result between the range cells. A simulation model was built to test the theory developed. Simulations were performed for various inter-element spacing and for four different target profiles types. Two objective metrics (signal to noise (SNR) ratio and peak signal to noise (PSNR) ratio) and a subjective metric (Structural Similarity (SSIM) index) were used to determine the performance of the algorithm and image quality. Image formed from the simulations using two hydrophone elements showed the presence of artefacts in the form of correlation sidelobes. The SNR metric showed a low gain of -5dB on comparison against a test image. PSNR and SSIM ratio showed a constant image quality over all the array spacing. The number of array elements was increased and linear operation like averaging was applied. The results showed no improvement in the gain and image quality. ii To overcome the problem of correlation sidelobes, a non-linear combining process has been proposed. Using the non-linear combining process it was found that the SNR showed an average gain of 10 dB on simulated data over the images formed without it. The PSNR and SSIM also showed a small increase in the image quality. The computational complexity of the proposed non-linear combining process was calculated by determining the number of multiplications and additions. The time taken to perform these operations on a SHARC ADSP 21261 chip was calculated theoretically. The calculations showed the feasibility of using this algorithm on a digital signal processing (DSP) hardware. An experimental prototype was built and performance was tested during sea trials. The data obtained was processed using a computer. The experimental results verified that the processing algorithm was effective in a practical system.EThOS - Electronic Theses Online ServiceUniversities UK : Newcastle UniversityGBUnited Kingdo

    Antenna Design for 5G and Beyond

    Get PDF
    With the rapid evolution of the wireless communications, fifth-generation (5G) communication has received much attention from both academia and industry, with many reported efforts and research outputs and significant improvements in different aspects, such as data rate speed and resolution, mobility, latency, etc. In some countries, the commercialization of 5G communication has already started as well as initial research of beyond technologies such as 6G.MIMO technology with multiple antennas is a promising technology to obtain the requirements of 5G/6G communications. It can significantly enhance the system capacity and resist multipath fading, and has become a hot spot in the field of wireless communications. This technology is a key component and probably the most established to truly reach the promised transfer data rates of future communication systems. In MIMO systems, multiple antennas are deployed at both the transmitter and receiver sides. The greater number of antennas can make the system more resistant to intentional jamming and interference. Massive MIMO with an especially high number of antennas can reduce energy consumption by targeting signals to individual users utilizing beamforming.Apart from sub-6 GHz frequency bands, 5G/6G devices are also expected to cover millimeter-wave (mmWave) and terahertz (THz) spectra. However, moving to higher bands will bring new challenges and will certainly require careful consideration of the antenna design for smart devices. Compact antennas arranged as conformal, planar, and linear arrays can be employed at different portions of base stations and user equipment to form phased arrays with high gain and directional radiation beams. The objective of this Special Issue is to cover all aspects of antenna designs used in existing or future wireless communication systems. The aim is to highlight recent advances, current trends, and possible future developments of 5G/6G antennas

    Real-Time Narrowband and Wideband Beamforming Techniques for Fully-Digital RF Arrays

    Get PDF
    Elemental digital beamforming offers increased flexibility for multi-function radio frequency (RF) systems supporting radar and communications applications. As fully digital arrays, components, and subsystems are becoming more affordable in the military and commercial industries, analog components such as phase shifters, filters, and mixers have begun to be replaced by digital circuits which presents efficiency challenges in power constrained scenarios. Furthermore, multi-function radar and communications systems are exploiting the multiple simultaneous beam capability provided by digital at every element beamforming. Along with further increasing data samples rates and increasing instantaneous bandwidths (IBW), real time processing in the digital domain has become a challenge due to the amount of data produced and processed in current systems. These arrays generate hundreds of gigabits per second of data throughput or more which is costly to send off-chip to an adjunct processor fundamentally limiting the overall performance of an RF array system. In this dissertation, digital filtering techniques and architectures are described which calibrate and beamform both narrowband and wideband RF arrays on receive. The techniques are shown to optimize one or many parameters of the digital transceiver system to improve the overall system efficiency. Digitally beamforming in the beamspace is shown to further increase the processing efficiency of an adaptive system compared to state of the art frequency domain approaches by minimizing major processing bottlenecks of generating adaptive filter coefficients. The techniques discussed are compared and contrasted across different hardware processor modules including field-programmable gate arrays (FPGAs), graphical processing units (GPUs), and central processing units (CPUs)

    Antenna Design for 5G and Beyond

    Get PDF
    This book is a reprint of the Special Issue Antenna Design for 5G and Beyond that was published in Sensors
    corecore