3,863 research outputs found

    Reo + mCRL2: A Framework for Model-Checking Dataflow in Service Compositions

    Get PDF
    The paradigm of service-oriented computing revolutionized the field of software engineering. According to this paradigm, new systems are composed of existing stand-alone services to support complex cross-organizational business processes. Correct communication of these services is not possible without a proper coordination mechanism. The Reo coordination language is a channel-based modeling language that introduces various types of channels and their composition rules. By composing Reo channels, one can specify Reo connectors that realize arbitrary complex behavioral protocols. Several formalisms have been introduced to give semantics to Reo. In their most basic form, they reflect service synchronization and dataflow constraints imposed by connectors. To ensure that the composed system behaves as intended, we need a wide range of automated verification tools to assist service composition designers. In this paper, we present our framework for the verification of Reo using the mCRL2 toolset. We unify our previous work on mapping various semantic models for Reo, namely, constraint automata, timed constraint automata, coloring semantics and the newly developed action constraint automata, to the process algebraic specification language of mCRL2, address the correctness of this mapping, discuss tool support, and present a detailed example that illustrates the use of Reo empowered with mCRL2 for the analysis of dataflow in service-based process models

    A Compositional Semantics for Stochastic Reo Connectors

    Full text link
    In this paper we present a compositional semantics for the channel-based coordination language Reo which enables the analysis of quality of service (QoS) properties of service compositions. For this purpose, we annotate Reo channels with stochastic delay rates and explicitly model data-arrival rates at the boundary of a connector, to capture its interaction with the services that comprise its environment. We propose Stochastic Reo automata as an extension of Reo automata, in order to compositionally derive a QoS-aware semantics for Reo. We further present a translation of Stochastic Reo automata to Continuous-Time Markov Chains (CTMCs). This translation enables us to use third-party CTMC verification tools to do an end-to-end performance analysis of service compositions.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Coordination via Interaction Constraints I: Local Logic

    Full text link
    Wegner describes coordination as constrained interaction. We take this approach literally and define a coordination model based on interaction constraints and partial, iterative and interactive constraint satisfaction. Our model captures behaviour described in terms of synchronisation and data flow constraints, plus various modes of interaction with the outside world provided by external constraint symbols, on-the-fly constraint generation, and coordination variables. Underlying our approach is an engine performing (partial) constraint satisfaction of the sets of constraints. Our model extends previous work on three counts: firstly, a more advanced notion of external interaction is offered; secondly, our approach enables local satisfaction of constraints with appropriate partial solutions, avoiding global synchronisation over the entire constraints set; and, as a consequence, constraint satisfaction can finally occur concurrently, and multiple parts of a set of constraints can be solved and interact with the outside world in an asynchronous manner, unless synchronisation is required by the constraints. This paper describes the underlying logic, which enables a notion of local solution, and relates this logic to the more global approach of our previous work based on classical logic

    Modularizing and Specifying Protocols among Threads

    Full text link
    We identify three problems with current techniques for implementing protocols among threads, which complicate and impair the scalability of multicore software development: implementing synchronization, implementing coordination, and modularizing protocols. To mend these deficiencies, we argue for the use of domain-specific languages (DSL) based on existing models of concurrency. To demonstrate the feasibility of this proposal, we explain how to use the model of concurrency Reo as a high-level protocol DSL, which offers appropriate abstractions and a natural separation of protocols and computations. We describe a Reo-to-Java compiler and illustrate its use through examples.Comment: In Proceedings PLACES 2012, arXiv:1302.579

    Toward Sequentializing Overparallelized Protocol Code

    Full text link
    In our ongoing work, we use constraint automata to compile protocol specifications expressed as Reo connectors into efficient executable code, e.g., in C. We have by now studied this automata based compilation approach rather well, and have devised effective solutions to some of its problems. Because our approach is based on constraint automata, the approach, its problems, and our solutions are in fact useful and relevant well beyond the specific case of compiling Reo. In this short paper, we identify and analyze two such rather unexpected problems.Comment: In Proceedings ICE 2014, arXiv:1410.701

    Integrated Structure and Semantics for Reo Connectors and Petri Nets

    Full text link
    In this paper, we present an integrated structural and behavioral model of Reo connectors and Petri nets, allowing a direct comparison of the two concurrency models. For this purpose, we introduce a notion of connectors which consist of a number of interconnected, user-defined primitives with fixed behavior. While the structure of connectors resembles hypergraphs, their semantics is given in terms of so-called port automata. We define both models in a categorical setting where composition operations can be elegantly defined and integrated. Specifically, we formalize structural gluings of connectors as pushouts, and joins of port automata as pullbacks. We then define a semantical functor from the connector to the port automata category which preserves this composition. We further show how to encode Reo connectors and Petri nets into this model and indicate applications to dynamic reconfigurations modeled using double pushout graph transformation

    First examples of neutral rhenium(V) complexes with a novel semi-rigid ligand containing a P,N,N,S donor atom set: Synthesis, characterisation and crystal structure

    Get PDF
    A new PN2S ligand, N-[2-(diphenylphosphino)phenyl]-2-[(S-trityl)acetylamino]ethanamide [Ph-P(Ph2)N2S(Trt)], was synthesised and reacted with ReV precursors. The reaction of both tritylated and detritylated ligands with ReOCl3(PPh3)2 gave the same expected neutral complex [ReO{Ph-P(Ph2)N2S}] (4) in good yield. An unexpected neutral and diamagnetic species, [ReN{Ph-P(Ph2)N2S(Trt)}] (5), has been isolated during the complexation of the tritylated ligand with ReNCl2(PPh3)2. The complexes, characterized by classical spectroscopic methods and X-ray analysis for 4, are the first examples of neutral semi-rigid-PN2S rhenium(V) complexes
    corecore