37,597 research outputs found

    A regret model applied to the maximum capture location problem

    Get PDF
    This article addresses issues related to location and allocation problems. Herein, we intend to demonstrate the influence of congestion, through the random number generation, of such systems in final solutions. An algorithm is presented which, in addition to the GRASP, incorporates the Regret with the pminmax method to evaluate the heuristic solution obtained with regard to its robustness for different scenarios. Taking as our point of departure the Maximum Capture Location Problem proposed by Church and Revelle [1, 26], an alternative perspective is added in which the choice behavior of the server does not depend only on the elapsed time from the demand point looking to the center, but includes also the service waiting time.N/

    A regret model applied to the facility location problem with limited capacity facilities

    Get PDF
    This article addresses issues related to location and allocation problems. Herein, we intend to demonstrate the influence of congestion, through the random number generation, of such systems in final solutions. An algorithm is presented which, in addition to the GRASP, incorporates the Regret with the pminmax method to evaluate the heuristic solution obtained with regard to its robustness for different scenarios. Taking as our point of departure the Facility Location Problem proposed by Balinski [27], an alternative perspective is added associating regret values to particular solutions.N/

    A regret model applied to the maximum coverage location problem with queue discipline

    Get PDF
    This article discusses issues related to the location and allocation problems where is intended to demonstrate, through the random number generation, the influence of congestion of such systems in the final solutions. It is presented an algorithm that, in addition to the GRASP, incorporates the Regret with the pminmax method to evaluate the heuristic solution obtained in regard to its robustness for different scenarios. To the well know Maximum Coverage Location Problem from Church and Revelle [1] an alternative perspective is added in which the choice behavior of the server does not only depend on the elapsed time from the demand point looking to the center, but also includes the waiting time for service conditioned by a waiting queue.N/

    Performance-oriented Cloud Provisioning: Taxonomy and Survey

    Full text link
    Cloud computing is being viewed as the technology of today and the future. Through this paradigm, the customers gain access to shared computing resources located in remote data centers that are hosted by cloud providers (CP). This technology allows for provisioning of various resources such as virtual machines (VM), physical machines, processors, memory, network, storage and software as per the needs of customers. Application providers (AP), who are customers of the CP, deploy applications on the cloud infrastructure and then these applications are used by the end-users. To meet the fluctuating application workload demands, dynamic provisioning is essential and this article provides a detailed literature survey of dynamic provisioning within cloud systems with focus on application performance. The well-known types of provisioning and the associated problems are clearly and pictorially explained and the provisioning terminology is clarified. A very detailed and general cloud provisioning classification is presented, which views provisioning from different perspectives, aiding in understanding the process inside-out. Cloud dynamic provisioning is explained by considering resources, stakeholders, techniques, technologies, algorithms, problems, goals and more.Comment: 14 pages, 3 figures, 3 table
    corecore