91 research outputs found

    Head-mounted augmented reality for explainable robotic wheelchair assistance

    Get PDF
    Robotic wheelchairs with built-in assistive fea- tures, such as shared control, are an emerging means of providing independent mobility to severely disabled individuals. However, patients often struggle to build a mental model of their wheelchair’s behaviour under different environmental conditions. Motivated by the desire to help users bridge this gap in perception, we propose a novel augmented reality system using a Microsoft Hololens as a head-mounted aid for wheelchair navigation. The system displays visual feedback to the wearer as a way of explaining the underlying dynamics of the wheelchair’s shared controller and its predicted future states. To investigate the influence of different interface design options, a pilot study was also conducted. We evaluated the acceptance rate and learning curve of an immersive wheelchair training regime, revealing preliminary insights into the potential beneficial and adverse nature of different augmented reality cues for assistive navigation. In particular, we demonstrate that care should be taken in the presentation of information, with effort-reducing cues for augmented information acquisition (for example, a rear-view display) being the most appreciated

    Adaptive Shared Autonomy between Human and Robot to Assist Mobile Robot Teleoperation

    Get PDF
    Die Teleoperation vom mobilen Roboter wird in großem Umfang eingesetzt, wenn es für Mensch unpraktisch oder undurchführbar ist, anwesend zu sein, aber die Entscheidung von Mensch wird dennoch verlangt. Es ist für Mensch stressig und fehleranfällig wegen Zeitverzögerung und Abwesenheit des Situationsbewusstseins, ohne Unterstützung den Roboter zu steuern einerseits, andererseits kann der völlig autonome Roboter, trotz jüngsten Errungenschaften, noch keine Aufgabe basiert auf die aktuellen Modelle der Wahrnehmung und Steuerung unabhängig ausführen. Deswegen müssen beide der Mensch und der Roboter in der Regelschleife bleiben, um gleichzeitig Intelligenz zur Durchführung von Aufgaben beizutragen. Das bedeut, dass der Mensch die Autonomie mit dem Roboter während des Betriebes zusammenhaben sollte. Allerdings besteht die Herausforderung darin, die beiden Quellen der Intelligenz vom Mensch und dem Roboter am besten zu koordinieren, um eine sichere und effiziente Aufgabenausführung in der Fernbedienung zu gewährleisten. Daher wird in dieser Arbeit eine neuartige Strategie vorgeschlagen. Sie modelliert die Benutzerabsicht als eine kontextuelle Aufgabe, um eine Aktionsprimitive zu vervollständigen, und stellt dem Bediener eine angemessene Bewegungshilfe bei der Erkennung der Aufgabe zur Verfügung. Auf diese Weise bewältigt der Roboter intelligent mit den laufenden Aufgaben auf der Grundlage der kontextuellen Informationen, entlastet die Arbeitsbelastung des Bedieners und verbessert die Aufgabenleistung. Um diese Strategie umzusetzen und die Unsicherheiten bei der Erfassung und Verarbeitung von Umgebungsinformationen und Benutzereingaben (i.e. der Kontextinformationen) zu berücksichtigen, wird ein probabilistischer Rahmen von Shared Autonomy eingeführt, um die kontextuelle Aufgabe mit Unsicherheitsmessungen zu erkennen, die der Bediener mit dem Roboter durchführt, und dem Bediener die angemesse Unterstützung der Aufgabenausführung nach diesen Messungen anzubieten. Da die Weise, wie der Bediener eine Aufgabe ausführt, implizit ist, ist es nicht trivial, das Bewegungsmuster der Aufgabenausführung manuell zu modellieren, so dass eine Reihe von der datengesteuerten Ansätzen verwendet wird, um das Muster der verschiedenen Aufgabenausführungen von menschlichen Demonstrationen abzuleiten, sich an die Bedürfnisse des Bedieners in einer intuitiven Weise über lange Zeit anzupassen. Die Praxistauglichkeit und Skalierbarkeit der vorgeschlagenen Ansätze wird durch umfangreiche Experimente sowohl in der Simulation als auch auf dem realen Roboter demonstriert. Mit den vorgeschlagenen Ansätzen kann der Bediener aktiv und angemessen unterstützt werden, indem die Kognitionsfähigkeit und Autonomieflexibilität des Roboters zu erhöhen

    Explainable shared control in assistive robotics

    Get PDF
    Shared control plays a pivotal role in designing assistive robots to complement human capabilities during everyday tasks. However, traditional shared control relies on users forming an accurate mental model of expected robot behaviour. Without this accurate mental image, users may encounter confusion or frustration whenever their actions do not elicit the intended system response, forming a misalignment between the respective internal models of the robot and human. The Explainable Shared Control paradigm introduced in this thesis attempts to resolve such model misalignment by jointly considering assistance and transparency. There are two perspectives of transparency to Explainable Shared Control: the human's and the robot's. Augmented reality is presented as an integral component that addresses the human viewpoint by visually unveiling the robot's internal mechanisms. Whilst the robot perspective requires an awareness of human "intent", and so a clustering framework composed of a deep generative model is developed for human intention inference. Both transparency constructs are implemented atop a real assistive robotic wheelchair and tested with human users. An augmented reality headset is incorporated into the robotic wheelchair and different interface options are evaluated across two user studies to explore their influence on mental model accuracy. Experimental results indicate that this setup facilitates transparent assistance by improving recovery times from adverse events associated with model misalignment. As for human intention inference, the clustering framework is applied to a dataset collected from users operating the robotic wheelchair. Findings from this experiment demonstrate that the learnt clusters are interpretable and meaningful representations of human intent. This thesis serves as a first step in the interdisciplinary area of Explainable Shared Control. The contributions to shared control, augmented reality and representation learning contained within this thesis are likely to help future research advance the proposed paradigm, and thus bolster the prevalence of assistive robots.Open Acces

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    A non-holonomic, highly human-in-the-loop compatible, assistive mobile robotic platform guidance navigation and control strategy

    Get PDF
    The provision of assistive mobile robotics for empowering and providing independence to the infirm, disabled and elderly in society has been the subject of much research. The issue of providing navigation and control assistance to users, enabling them to drive their powered wheelchairs effectively, can be complex and wide-ranging; some users fatigue quickly and can find that they are unable to operate the controls safely, others may have brain injury re-sulting in periodic hand tremors, quadriplegics may use a straw-like switch in their mouth to provide a digital control signal. Advances in autonomous robotics have led to the development of smart wheelchair systems which have attempted to address these issues; however the autonomous approach has, ac-cording to research, not been successful; users reporting that they want to be active drivers and not passengers. Recent methodologies have been to use collaborative or shared control which aims to predict or anticipate the need for the system to take over control when some pre-decided threshold has been met, yet these approaches still take away control from the us-er. This removal of human supervision and control by an autonomous system makes the re-sponsibility for accidents seriously problematic. This thesis introduces a new human-in-the-loop control structure with real-time assistive lev-els. One of these levels offers improved dynamic modelling and three of these levels offer unique and novel real-time solutions for: collision avoidance, localisation and waypoint iden-tification, and assistive trajectory generation. This architecture and these assistive functions always allow the user to remain fully in control of any motion of the powered wheelchair, shown in a series of experiments

    Combining haptics and inertial motion capture to enhance remote control of a dual-arm robot

    Get PDF
    High dexterity is required in tasks in which there is contact between objects, such as surface conditioning (wiping, polishing, scuffing, sanding, etc.), specially when the location of the objects involved is unknown or highly inaccurate because they are moving, like a car body in automotive industry lines. These applications require the human adaptability and the robot accuracy. However, sharing the same workspace is not possible in most cases due to safety issues. Hence, a multi-modal teleoperation system combining haptics and an inertial motion capture system is introduced in this work. The human operator gets the sense of touch thanks to haptic feedback, whereas using the motion capture device allows more naturalistic movements. Visual feedback assistance is also introduced to enhance immersion. A Baxter dual-arm robot is used to offer more flexibility and manoeuvrability, allowing to perform two independent operations simultaneously. Several tests have been carried out to assess the proposed system. As it is shown by the experimental results, the task duration is reduced and the overall performance improves thanks to the proposed teleoperation method

    Augmenting user capabilities through an adaptive assistive manipulator

    Get PDF
    Mención Internacional en el título de doctorAssistive robot manipulators have the potential to increase the independence of disabled persons in activities of daily living. The current designs are mainly limited to pure teleoperation by the user, given the need for keeping the user in the control loop, and the complexity of the tasks and environments in which they operate. This thesis aims to augment the user’s capabilities for performing such tasks by adapting the robot, and its level of assistance, to the user. Methodologies for modeling and benchmarking the complete human-robot system were established, which helped drive the development of different approaches to adaptation. This included a task-oriented optimization of the robot physical structure, approaches for low-level adaptive shared control, and work on interactive learning of, and assistance on completing, simple object manipulation tasks. Three experimental platforms were used: The ASIBOT manipulator of Universidad Carlos III de Madrid (UC3M), the AMOR manipulator of Exact Dynamics, and the iCub humanoid robot.Los manipuladores asistenciales tienen el potencial de incrementar la independencia de personas discapacitadas en sus actividades de la vida diaria. Los diseños actuales se limitan principalmente a una pura teleoperación, pues dada la complejidad de las tareas y del entorno, se necesita mantener al usuario en el lazo de control. Esta tesis pretende mejorar las capacidades del usuario para realizar estas tareas, adaptando el robot y su nivel de asistencia a las necesidades del usuario. Se han establecido metodologías para el modelado y evaluación del comportamiento del sistema formado por humano y robot, lo que ha permitido el desarrollo de diferentes aproximaciones a la adaptación. Esto incluye desde la optimización de la estructura del robot atendiendo a las tareas, la evaluación de diversas aproximaciones al control compartido adaptativo a bajo nivel, al aprendizaje interactivo y el desarrollo de asistencias para completar tareas sencillas de manipulación. Se ha hecho uso de tres plataformas experimentales: el manipulador ASIBOT de la Universidad Carlos III de Madrid (UC3M), el manipulador AMOR de Exact Dynamics y el humanoide iCub.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Alberto Sanfeliú.- Secretario: Concepción Alicia Monje Micharet.- Vocal: Yiannis Demiri
    corecore