8,642 research outputs found

    BRAIM: A computer-aided diagnosis system for neurodegenerative diseases and brain lesion monitoring from volumetric analyses

    Full text link
    [EN] Background and objective: This paper presents BRAIM, a computer-aided diagnosis (CAD) system to help clinicians in diagnosing and treatment monitoring of brain diseases from magnetic resonance image processing. BRAIM can be used for early diagnosis of neurodegenerative diseases such as Parkinson, Alzheimer or Multiple Sclerosis and also for brain lesion diagnosis and monitoring. Methods: The developed CAD system includes different user-friendly tools for segmenting and determining whole brain and brain structure volumes in an easy and accurate way. Specifically, three types of measurements can be performed: (1) total volume of white, gray matter and cerebrospinal fluid; (2) brain structure volumes (volume of putamen, thalamus, hippocampus and caudate nucleus); and (3) brain lesion volumes. Results: As a proof of concept, some study cases were analyzed with the presented system achieving promising results. In addition to be used to quantify treatment effectiveness in patients with brain lesions, it was demonstrated that BRAIM is able to classify a subject according to the brain volume measurements using as reference a healthy control database created for this purpose. Conclusions: The CAD system presented in this paper simplifies the daily work of clinicians and provides them with objective and quantitative volume data for prospective and retrospective analyses. (C) 2017 Elsevier B.V. All rights reserved.This work has been supported by the Centro para el Desarrollo Tecnologico Industrial (CDTI) under the project BRAIM (IDI-20130020)Morales, S.; Bernabeu-Sanz, A.; López-Mir, F.; Gonzalez, P.; Luna, L.; Naranjo Ornedo, V. (2017). BRAIM: A computer-aided diagnosis system for neurodegenerative diseases and brain lesion monitoring from volumetric analyses. Computer Methods and Programs in Biomedicine. 145:167-179. https://doi.org/10.1016/j.cmpb.2017.04.006S16717914

    Towards a Novel Way to Predict Deficits After a Brain Lesion: A Stroke Example

    Get PDF
    Many studies have addressed the relations between different human brain regions and their role in cognitive, motor and sensory functions in patients that have suffered a brain lesion (stroke, traumatic brain injury, tissue removal). Nowadays, it is well established that the brain works as a network and the symptoms in a person are a combination of the direct impact of the lesion in a single region and its connectivity with other healthy brain regions. The aim of the present study is the development of a user-friendly desktop application to predict the induced cognitive deficits in patients who have suffered a brain lesion. The herein presented application is based on Neurosynth platform, and takes as an input a MRI mask that describes a lesion. Then our software exploits the knowledge that already exists in Neurosynth platform, so as to predict the potential deficits by grouping the Neurosynth's terms that have increased Z scores with our mask. In addition, we have embedded two types of visualization methods: One to present the slices of the brain mask and another to show the 3D volume of the mask into 3D semitransparent human brain. The added value of the presented application is that it may give us a clue about which mechanisms are probably affected by a lesion in a specific region, while in the future it could provide neurosurgeons with insightful knowledge helping them in the plannification of a forthcoming surgical procedure. The proposed software was tested on 7 stroke patients, predicting accurately the 91% of the measured deficits found during a neuropsychological assessment

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Image processing software for seizure onset zone localization in refractory epilepsy

    Get PDF
    Treballs Finals de Grau d'Enginyeria Biomèdica. Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona. Curs: 2020-2021. Directora: Aida Niñerola Baizán. Tutors: Aida Niñerola and Raúl TudelaEpilepsy is one of the most common serious neurological disorders in the world and a 30-40% of the affected population is resistant to the pharmacological treatment (refractory epilepsy). A possible treatment for them is the surgical resection of the epileptogenic zone (EZ). The success of the surgical treatment is fundamentally determined by the accuracy of presurgical identification of the EZ based on a variety of diagnostic tests. Among them, PISCOM technique is a multimodal imaging processing algorithm, useful for this purpose, yet not incorporated into clinical routine. This project aims to develop an ergonomic and user-friendly graphical interface that integrates the PISCOM algorithm to make the process become easy and accessible for clinicians. To create the graphical interface, different software environments were studied. The solution chosen was to develop an extension for 3D Slicer, an open-source software package used for medical and biomedical imaging research, and the processing method was therefore adapted to the new platform. The result was assessed with a clinic questionnaire filled out by two nuclear medicine physicians of Hospital Clínic de Barcelona after an introduction session of the developed extension. The extension was considered to be a user-friendly tool for applying the PISCOM technique, that fulfilled their requirements, and with future potential. Some next steps to improve the user experience were suggested..

    Focal Spot, Winter 2005/2006

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1101/thumbnail.jp
    corecore