26,009 research outputs found

    A Stochastic Geometry-based Demand Response Management Framework for Cellular Networks Powered by Smart Grid

    Full text link
    In this paper, the production decisions across multiple energy suppliers in smart grid, powering cellular networks are investigated. The suppliers are characterized by different offered prices and pollutant emissions levels. The challenge is to decide the amount of energy provided by each supplier to each of the operators such that their profitability is maximized while respecting the maximum tolerated level of CO2 emissions. The cellular operators are characterized by their offered quality of service (QoS) to the subscribers and the number of users that determines their energy requirements. Stochastic geometry is used to determine the average power needed to achieve the target probability of coverage for each operator. The total average power requirements of all networks are fed to an optimization framework to find the optimal amount of energy to be provided from each supplier to the operators. The generalized α\alpha-fair utility function is used to avoid production bias among the suppliers based on profitability of generation. Results illustrate the production behavior of the energy suppliers versus QoS level, cost of energy, capacity of generation, and level of fairness.Comment: 6 pages, 4 figure

    System Design of Internet-of-Things for Residential Smart Grid

    Full text link
    Internet-of-Things (IoTs) envisions to integrate, coordinate, communicate, and collaborate real-world objects in order to perform daily tasks in a more intelligent and efficient manner. To comprehend this vision, this paper studies the design of a large scale IoT system for smart grid application, which constitutes a large number of home users and has the requirement of fast response time. In particular, we focus on the messaging protocol of a universal IoT home gateway, where our cloud enabled system consists of a backend server, unified home gateway (UHG) at the end users, and user interface for mobile devices. We discuss the features of such IoT system to support a large scale deployment with a UHG and real-time residential smart grid applications. Based on the requirements, we design an IoT system using the XMPP protocol, and implemented in a testbed for energy management applications. To show the effectiveness of the designed testbed, we present some results using the proposed IoT architecture.Comment: 10 pages, 6 figures, journal pape

    Green revolution 2.0: a sustainable energy path

    Full text link
    This repository item contains a single issue of Sustainable Development Insights, a series of short policy essays that began publishing in 2008 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. The series seeks to promote a broad interdisciplinary dialogue on how to accelerate sustainable development at all levels.The Green Revolution in agriculture greatly increased crop yields and averted mass starvation, but it also turned small farms into factory farms that concentrated production in a few locations and reduced the diversity of crops. In this paper, Professor Nalin Kulatilaka, Co-Director of BU’s Clean Energy & Environmental Sustainability Initiative, calls for a Green Energy Revolution that decentralizes energy supplies through a smart electricity network. He argues that such a revolution could provide for a diversity of energy sources located closer to users, which in turn could shift consumption patterns, reduce losses and decrease overall energy demand. He concludes that shifting to such a system “will adopt clean energy technologies while fostering new businesses, creating new jobs and ultimately empowering society to reach new heights in energy conservation and sustainability“

    Enabling Micro-level Demand-Side Grid Flexiblity in Resource Constrained Environments

    Full text link
    The increased penetration of uncertain and variable renewable energy presents various resource and operational electric grid challenges. Micro-level (household and small commercial) demand-side grid flexibility could be a cost-effective strategy to integrate high penetrations of wind and solar energy, but literature and field deployments exploring the necessary information and communication technologies (ICTs) are scant. This paper presents an exploratory framework for enabling information driven grid flexibility through the Internet of Things (IoT), and a proof-of-concept wireless sensor gateway (FlexBox) to collect the necessary parameters for adequately monitoring and actuating the micro-level demand-side. In the summer of 2015, thirty sensor gateways were deployed in the city of Managua (Nicaragua) to develop a baseline for a near future small-scale demand response pilot implementation. FlexBox field data has begun shedding light on relationships between ambient temperature and load energy consumption, load and building envelope energy efficiency challenges, latency communication network challenges, and opportunities to engage existing demand-side user behavioral patterns. Information driven grid flexibility strategies present great opportunity to develop new technologies, system architectures, and implementation approaches that can easily scale across regions, incomes, and levels of development

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Architectures for smart end-user services in the power grid

    Get PDF
    Abstract-The increase of distributed renewable electricity generators, such as solar cells and wind turbines, requires a new energy management system. These distributed generators introduce bidirectional energy flows in the low-voltage power grid, requiring novel coordination mechanisms to balance local supply and demand. Closed solutions exist for energy management on the level of individual homes. However, no service architectures have been defined that allow the growing number of end-users to interact with the other power consumers and generators and to get involved in more rational energy consumption patterns using intuitive applications. We therefore present a common service architecture that allows houses with renewable energy generation and smart energy devices to plug into a distributed energy management system, integrated with the public power grid. Next to the technical details, we focus on the usability aspects of the end-user applications in order to contribute to high service adoption and optimal user involvement. The presented architecture facilitates end-users to reduce net energy consumption, enables power grid providers to better balance supply and demand, and allows new actors to join with new services. We present a novel simulator that allows to evaluate both the power grid and data communication aspects, and illustrate a 22% reduction of the peak load by deploying a central coordinator inside the home gateway of an end-user
    • 

    corecore