66,957 research outputs found

    A formal logic for the abduction of singular hypotheses

    Get PDF

    The KB paradigm and its application to interactive configuration

    Full text link
    The knowledge base paradigm aims to express domain knowledge in a rich formal language, and to use this domain knowledge as a knowledge base to solve various problems and tasks that arise in the domain by applying multiple forms of inference. As such, the paradigm applies a strict separation of concerns between information and problem solving. In this paper, we analyze the principles and feasibility of the knowledge base paradigm in the context of an important class of applications: interactive configuration problems. In interactive configuration problems, a configuration of interrelated objects under constraints is searched, where the system assists the user in reaching an intended configuration. It is widely recognized in industry that good software solutions for these problems are very difficult to develop. We investigate such problems from the perspective of the KB paradigm. We show that multiple functionalities in this domain can be achieved by applying different forms of logical inferences on a formal specification of the configuration domain. We report on a proof of concept of this approach in a real-life application with a banking company. To appear in Theory and Practice of Logic Programming (TPLP).Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Distributed Computing with Adaptive Heuristics

    Full text link
    We use ideas from distributed computing to study dynamic environments in which computational nodes, or decision makers, follow adaptive heuristics (Hart 2005), i.e., simple and unsophisticated rules of behavior, e.g., repeatedly "best replying" to others' actions, and minimizing "regret", that have been extensively studied in game theory and economics. We explore when convergence of such simple dynamics to an equilibrium is guaranteed in asynchronous computational environments, where nodes can act at any time. Our research agenda, distributed computing with adaptive heuristics, lies on the borderline of computer science (including distributed computing and learning) and game theory (including game dynamics and adaptive heuristics). We exhibit a general non-termination result for a broad class of heuristics with bounded recall---that is, simple rules of behavior that depend only on recent history of interaction between nodes. We consider implications of our result across a wide variety of interesting and timely applications: game theory, circuit design, social networks, routing and congestion control. We also study the computational and communication complexity of asynchronous dynamics and present some basic observations regarding the effects of asynchrony on no-regret dynamics. We believe that our work opens a new avenue for research in both distributed computing and game theory.Comment: 36 pages, four figures. Expands both technical results and discussion of v1. Revised version will appear in the proceedings of Innovations in Computer Science 201

    Cellular Systems with Many Antennas: Large System Analysis under Pilot Contamination

    Full text link
    Base stations with a large number of transmit antennas have the potential to serve a large number of users simultaneously at higher rates. They also promise a lower power consumption due to coherent combining at the receiver. However, the receiver processing in the uplink relies on the channel estimates which are known to suffer from pilot interference. In this work, we perform an uplink large system analysis of multi-cell multi-antenna system when the receiver employs a matched filtering with a pilot contaminated estimate. We find the asymptotic Signal to Interference plus Noise Ratio (SINR) as the number of antennas and number of users per base station grow large while maintaining a fixed ratio. To do this, we make use of the similarity of the uplink received signal in a multi-antenna system to the representation of the received signal in CDMA systems. The asymptotic SINR expression explicitly captures the effect of pilot contamination and that of interference averaging. This also explains the SINR performance of receiver processing schemes at different regimes such as instances when the number of antennas are comparable to number of users as well as when antennas exceed greatly the number of users. Finally, we also propose that the adaptive MMSE symbol detection scheme, which does not require the explicit channel knowledge, can be employed for cellular systems with large number of antennas.Comment: 5 pages, 4 figure

    Caching with Partial Adaptive Matching

    Full text link
    We study the caching problem when we are allowed to match each user to one of a subset of caches after its request is revealed. We focus on non-uniformly popular content, specifically when the file popularities obey a Zipf distribution. We study two extremal schemes, one focusing on coded server transmissions while ignoring matching capabilities, and the other focusing on adaptive matching while ignoring potential coding opportunities. We derive the rates achieved by these schemes and characterize the regimes in which one outperforms the other. We also compare them to information-theoretic outer bounds, and finally propose a hybrid scheme that generalizes ideas from the two schemes and performs at least as well as either of them in most memory regimes.Comment: 35 pages, 7 figures. Shorter versions have appeared in IEEE ISIT 2017 and IEEE ITW 201
    corecore