618 research outputs found

    Keeping checkpoint/restart viable for exascale systems

    Get PDF
    Next-generation exascale systems, those capable of performing a quintillion operations per second, are expected to be delivered in the next 8-10 years. These systems, which will be 1,000 times faster than current systems, will be of unprecedented scale. As these systems continue to grow in size, faults will become increasingly common, even over the course of small calculations. Therefore, issues such as fault tolerance and reliability will limit application scalability. Current techniques to ensure progress across faults like checkpoint/restart, the dominant fault tolerance mechanism for the last 25 years, are increasingly problematic at the scales of future systems due to their excessive overheads. In this work, we evaluate a number of techniques to decrease the overhead of checkpoint/restart and keep this method viable for future exascale systems. More specifically, this work evaluates state-machine replication to dramatically increase the checkpoint interval (the time between successive checkpoints) and hash-based, probabilistic incremental checkpointing using graphics processing units to decrease the checkpoint commit time (the time to save one checkpoint). Using a combination of empirical analysis, modeling, and simulation, we study the costs and benefits of these approaches on a wide range of parameters. These results, which cover of number of high-performance computing capability workloads, different failure distributions, hardware mean time to failures, and I/O bandwidths, show the potential benefits of these techniques for meeting the reliability demands of future exascale platforms

    Fault tolerance at system level based on RADIC architecture

    Get PDF
    The increasing failure rate in High Performance Computing encourages the investigation of fault tolerance mechanisms to guarantee the execution of an application in spite of node faults. This paper presents an automatic and scalable fault tolerant model designed to be transparent for applications and for message passing libraries. The model consists of detecting failures in the communication socket caused by a faulty node. In those cases, the affected processes are recovered in a healthy node and the connections are reestablished without losing data. The Redundant Array of Distributed Independent Controllers architecture proposes a decentralized model for all the tasks required in a fault tolerance system: protection, detection, recovery and masking. Decentralized algorithms allow the application to scale, which is a key property for current HPC system. Three different rollback recovery protocols are defined and discussed with the aim of offering alternatives to reduce overhead when multicore systems are used. A prototype has been implemented to carry out an exhaustive experimental evaluation through Master/Worker and Single Program Multiple Data execution models. Multiple workloads and an increasing number of processes have been taken into account to compare the above mentioned protocols. The executions take place in two multicore Linux clusters with different socket communications libraries

    Parallel computation of the reachability graph of petri net models with semantic information

    Get PDF
    Formal verification plays a crucial role when dealing with correctness of systems. In a previous work, the authors proposed a class of models, the Unary Resource Description Framework Petri Nets (U-RDF-PN), which integrated Petri nets and (RDF-based) semantic information. The work also proposed a model checking approach for the analysis of system behavioural properties that made use of the net reachability graph. Computing such a graph, specially when dealing with high-level structures as RDF graphs, is a very expensive task that must be considered. This paper describes the development of a parallel solution for the computation of the reachability graph of U-RDF-PN models. Besides that, the paper presents some experimental results when the tool was deployed in cluster and cloud frameworks. The results not only show the improvement in the total time required for computing the graph, but also the high scalability of the solution, which make it very useful thanks to the current (and future) availability of cloud infrastructures

    Process migration for MPI applications based on coordinated checkpoint

    Get PDF
    2005-2006 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Fault Tolerant Distributed Computing Framework for Scientific Algorithms

    Get PDF
    Arvuti riistvara füüsilised piirangud on lõpetanud protsessorite tuumade arvutusvõimsuse suurenemist, kuid arvutiarhitektuuride suurenev parallelsus säilitab Moore'i seaduse kehtivust. Samal ajal tõuseb arvutusvõimsuse nõudlus pidevalt, sundides inimesi kohandada algoritme paralleelsete arhitektuuride kasutamiseks. Üks paljudest paralleelsete arhitektuuride probleemidest on tõrkete tekkimise tõenäosuse suurenemine parallelsete komponentide arvu suurenemisega. Piinlikult paralleelsete ja andmemahukate algoritmidega seoses on MapReduce läbinud pika tee, et tagada kasutajatele suure hulga hajutatud arvutiressursside lihtsustatud kasutamine ilma töö kaotamise hirmuta. Sama ei sa öelda kommunikatsiooni intensiivsete algoritmide jaoks mis on levinud teadusarvutuse domeenis. Selles töös on pakutud uus BSP ({\it Bulk Synchronous Parallel}) inspireeritud parallelprogrammeerimise mudel, mille lähenemisviis on sarnane {\it continuation passing} programmeerimis stiiliga ja mis võimaldab rakendada BSP struktuuril baseeruvat loomulikku tõrkekindlust. Töös on kirjeldatud loodud hajusarvutuste raamistik NEWT, mis põhineb pakutud mudelil ja on kasutatud selle lähenemisviisi valideerimiseks. Raamistik säilitab enamik MapReduce eelisi ning efektiivsemalt toetab suuremat algoritmide hulka, nagu näiteks eelmainitud iteratiivsed algoritmid.The physical limitations of computing hardware have put a stop on the increase of a single processor core's computing power. However, Moore's law is still maintained through the ever increasing parallelism of the computing architectures. At the same time the demand for computational power has been unrelentingly growing, forcing people to adapt the algorithms they use to these parallel architectures. One of the many downsides to parallel architectures is that with the rise in the number of components, the chance of failure of one of these components increases. When it comes to embarrassingly parallel data-intensive algorithms, Map-Reduce has gone a long way in ensuring users can easily utilize large amounts of distributed computing resources without the fear of losing work. However, this does not apply to iterative communication-intensive algorithms common in the scientific computing domain. In this work a new BSP-inspired (Bulk Synchronous Parallel) programming model is proposed, which adopts an approach similar to continuation passing for implementing parallel algorithms and facilitates fault-tolerance inherent in the BSP program structure. The distributed computing framework NEWT, which is based on the proposed model, is described and used to validate the approach. The framework retains most of the advantages that Map-Reduce provides, yet efficiently supports a larger assortment of algorithms, such as the aforementioned iterative ones

    GPUs as Storage System Accelerators

    Full text link
    Massively multicore processors, such as Graphics Processing Units (GPUs), provide, at a comparable price, a one order of magnitude higher peak performance than traditional CPUs. This drop in the cost of computation, as any order-of-magnitude drop in the cost per unit of performance for a class of system components, triggers the opportunity to redesign systems and to explore new ways to engineer them to recalibrate the cost-to-performance relation. This project explores the feasibility of harnessing GPUs' computational power to improve the performance, reliability, or security of distributed storage systems. In this context, we present the design of a storage system prototype that uses GPU offloading to accelerate a number of computationally intensive primitives based on hashing, and introduce techniques to efficiently leverage the processing power of GPUs. We evaluate the performance of this prototype under two configurations: as a content addressable storage system that facilitates online similarity detection between successive versions of the same file and as a traditional system that uses hashing to preserve data integrity. Further, we evaluate the impact of offloading to the GPU on competing applications' performance. Our results show that this technique can bring tangible performance gains without negatively impacting the performance of concurrently running applications.Comment: IEEE Transactions on Parallel and Distributed Systems, 201
    corecore