182 research outputs found

    Edge-Caching Wireless Networks: Performance Analysis and Optimization

    Get PDF
    Edge-caching has received much attention as an efficient technique to reduce delivery latency and network congestion during peak-traffic times by bringing data closer to end users. Existing works usually design caching algorithms separately from physical layer design. In this paper, we analyse edge-caching wireless networks by taking into account the caching capability when designing the signal transmission. Particularly, we investigate multi-layer caching where both base station (BS) and users are capable of storing content data in their local cache and analyse the performance of edge-caching wireless networks under two notable uncoded and coded caching strategies. Firstly, we propose a coded caching strategy that is applied to arbitrary values of cache size. The required backhaul and access rates are derived as a function of the BS and user cache size. Secondly, closed-form expressions for the system energy efficiency (EE) corresponding to the two caching methods are derived. Based on the derived formulas, the system EE is maximized via precoding vectors design and optimization while satisfying a predefined user request rate. Thirdly, two optimization problems are proposed to minimize the content delivery time for the two caching strategies. Finally, numerical results are presented to verify the effectiveness of the two caching methods.Comment: to appear in IEEE Trans. Wireless Commu

    Living on the Edge: The Role of Proactive Caching in 5G Wireless Networks

    Full text link
    This article explores one of the key enablers of beyond 44G wireless networks leveraging small cell network deployments, namely proactive caching. Endowed with predictive capabilities and harnessing recent developments in storage, context-awareness and social networks, peak traffic demands can be substantially reduced by proactively serving predictable user demands, via caching at base stations and users' devices. In order to show the effectiveness of proactive caching, we examine two case studies which exploit the spatial and social structure of the network, where proactive caching plays a crucial role. Firstly, in order to alleviate backhaul congestion, we propose a mechanism whereby files are proactively cached during off-peak demands based on file popularity and correlations among users and files patterns. Secondly, leveraging social networks and device-to-device (D2D) communications, we propose a procedure that exploits the social structure of the network by predicting the set of influential users to (proactively) cache strategic contents and disseminate them to their social ties via D2D communications. Exploiting this proactive caching paradigm, numerical results show that important gains can be obtained for each case study, with backhaul savings and a higher ratio of satisfied users of up to 22%22\% and 26%26\%, respectively. Higher gains can be further obtained by increasing the storage capability at the network edge.Comment: accepted for publication in IEEE Communications Magazin

    Breaking the Economic Barrier of Caching in Cellular Networks: Incentives and Contracts

    Get PDF
    In this paper, a novel approach for providing incentives for caching in small cell networks (SCNs) is proposed based on the economics framework of contract theory. In this model, a mobile network operator (MNO) designs contracts that will be offered to a number of content providers (CPs) to motivate them to cache their content at the MNO's small base stations (SBSs). A practical model in which information about the traffic generated by the CPs' users is not known to the MNO is considered. Under such asymmetric information, the incentive contract between the MNO and each CP is properly designed so as to determine the amount of allocated storage to the CP and the charged price by the MNO. The contracts are derived by the MNO in a way to maximize the global benefit of the CPs and prevent them from using their private information to manipulate the outcome of the caching process. For this interdependent contract model, the closed-form expressions of the price and the allocated storage space to each CP are derived. This proposed mechanism is shown to satisfy the sufficient and necessary conditions for the feasibility of a contract. Moreover, it is shown that the proposed pricing model is budget balanced, enabling the MNO to cover all the caching expenses via the prices charged to the CPs. Simulation results show that none of the CPs will have an incentive to choose a contract designed for CPs with different traffic loads.Comment: Accepted for publication at Globecom 201
    corecore