1,551 research outputs found

    Improving shape from shading with interactive Tabu search

    Get PDF
    Optimisation based shape from shading (SFS) is sensitive to initialization: errors in initialization are a significant cause of poor overall shape reconstruction. In this paper, we present a method to help overcome this problem by means of user interaction. There are two key elements in our method. Firstly, we extend SFS to consider a set of initializations, rather than to use a single one. Secondly, we efficiently explore this initialization space using a heuristic search method, tabu search, guided by user evaluation of the reconstruction quality. Reconstruction results on both synthetic and real images demonstrate the effectiveness of our method in providing more desirable shape reconstructions

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Depicting shape, materials and lighting: observation, formulation and implementation of artistic principles

    Get PDF
    The appearance of a scene results from complex interactions between the geometry, materials and lights that compose that scene. While Computer Graphics algorithms are now capable of simulating these interactions, it comes at the cost of tedious 3D modeling of a virtual scene, which only well-trained artists can do. In contrast, photographs allow the instantaneous capture of a scene, but shape, materials and lighting are difficult to manipulate directly in the image. Drawings can also suggest real or imaginary scenes with a few lines but creating convincing illustrations requires significant artistic skills.The goal of my research is to facilitate the creation and manipulation of shape, materials and lighting in drawings and photographs, for laymen and professional artists alike. This document first presents my work on computer-assisted drawing where I proposed algorithms to automate the depiction of materials in line drawings as well as to estimate a 3D model from design sketches. I also worked on user interfaces to assist beginners in learning traditional drawing techniques. Through the development of these projects I have formalized a general methodology to observe how artists work, deduce artistic principles from these observations, and implement these principles as algorithms. In the second part of this document I present my work on relighting multiple photographs of a scene, for which we first need to estimate the materials and lighting that compose that scene. The main novelty of our approach is to combine image analysis and lighting simulation in order to reason about the scene despite the lack of an accurate 3D model

    A Survey of Algorithms Involved in the Conversion of 2-D Images to 3-D Model

    Get PDF
    Since the advent of machine learning, deep neural networks, and computer graphics, the field of 2D image to 3D model conversion has made tremendous strides. As a result, many algorithms and methods for converting 2D to 3D images have been developed, including SFM, SFS, MVS, and PIFu. Several strategies have been compared, and it was found that each has pros and cons that make it appropriate for particular applications. For instance, SFM is useful for creating realistic 3D models from a collection of pictures, whereas SFS is best for doing so from a single image. While PIFu can create extremely detailed 3D models of human figures from a single image, MVS can manage complicated situations with varied lighting and texture. The method chosen to convert 2D images to 3D ultimately depends on the demands of the application

    Novel Views of Objects from a Single Image

    Get PDF
    Taking an image of an object is at its core a lossy process. The rich information about the three-dimensional structure of the world is flattened to an image plane and decisions such as viewpoint and camera parameters are final and not easily revertible. As a consequence, possibilities of changing viewpoint are limited. Given a single image depicting an object, novel-view synthesis is the task of generating new images that render the object from a different viewpoint than the one given. The main difficulty is to synthesize the parts that are disoccluded; disocclusion occurs when parts of an object are hidden by the object itself under a specific viewpoint. In this work, we show how to improve novel-view synthesis by making use of the correlations observed in 3D models and applying them to new image instances. We propose a technique to use the structural information extracted from a 3D model that matches the image object in terms of viewpoint and shape. For the latter part, we propose an efficient 2D-to-3D alignment method that associates precisely the image appearance with the 3D model geometry with minimal user interaction. Our technique is able to simulate plausible viewpoint changes for a variety of object classes within seconds. Additionally, we show that our synthesized images can be used as additional training data that improves the performance of standard object detectors

    Intelligent visual media processing: when graphics meets vision

    Get PDF
    The computer graphics and computer vision communities have been working closely together in recent years, and a variety of algorithms and applications have been developed to analyze and manipulate the visual media around us. There are three major driving forces behind this phenomenon: i) the availability of big data from the Internet has created a demand for dealing with the ever increasing, vast amount of resources; ii) powerful processing tools, such as deep neural networks, provide e�ective ways for learning how to deal with heterogeneous visual data; iii) new data capture devices, such as the Kinect, bridge between algorithms for 2D image understanding and 3D model analysis. These driving forces have emerged only recently, and we believe that the computer graphics and computer vision communities are still in the beginning of their honeymoon phase. In this work we survey recent research on how computer vision techniques bene�t computer graphics techniques and vice versa, and cover research on analysis, manipulation, synthesis, and interaction. We also discuss existing problems and suggest possible further research directions
    corecore