26,736 research outputs found

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    Smart mobility: opportunity or threat to innovate places and cities

    Get PDF
    The concept of the “smart mobility” has become something of a buzz phrase in the planning and transport fields in the last decade. After a fervent first phase in which information technology and digital data were considered the answer for making mobility more efficient, more attractive and for increasing the quality of travel, some disappointing has grown around this concept: the distance between the visionarypotentialthatsmartness is providingis too far from the reality of urban mobility in cities. We argue in particular that two main aspects of smart mobility should be eluded: the first refers to the merely application to technology on mobility system, what we called the techo-centric aspect; the second feature is the consumer-centric aspect of smart mobility, that consider transport users only as potential consumers of a service. Starting from this, the study critics the smart mobility approach and applications and argues on a“smarter mobility” approach, in which technologies are only oneaspects of a more complex system. With a view on the urgency of looking beyond technology and beyond consumer-oriented solutions, the study arguments the need for a cross-disciplinary and a more collaborative approach that could supports transition towards a“smarter mobility” for enhancing the quality of life and the development ofvibrant cities. The article does not intend to produce a radical critique of the smart mobility concept,denying a priori its utility. Our perspectiveisthat the smart mobility is sometimes used as an evocativeslogan lacking some fundamental connection with other central aspect of mobility planning and governance. Main research questions are: what is missing in the technology-oriented or in the consumers-oriented smart mobility approach? What are the main risks behind these approaches? To answer this questions the paper provides in Section 2 the rationale behind the paper;Section 3 provides a literature review that explores the evolution on smart mobility paradigm in the last decades analysing in details the “techno-centric”and the “consumer-centric” aspects. Section 4proposes an integrated innovative approach for smart mobility, providing examples and some innovative best practices in Belgium. Some conclusions are finally drawnin Section 5, based on the role of smart mobility to create not only virtual platforms but high quality urban places

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research
    • …
    corecore