2,233 research outputs found

    How Much Cache is Needed to Achieve Linear Capacity Scaling in Backhaul-Limited Dense Wireless Networks?

    Full text link
    Dense wireless networks are a promising solution to meet the huge capacity demand in 5G wireless systems. However, there are two implementation issues, namely the interference and backhaul issues. To resolve these issues, we propose a novel network architecture called the backhaul-limited cached dense wireless network (C-DWN), where a physical layer (PHY) caching scheme is employed at the base stations (BSs) but only a fraction of the BSs have wired payload backhauls. The PHY caching can replace the role of wired backhauls to achieve both the cache-induced MIMO cooperation gain and cache-assisted Multihopping gain. Two fundamental questions are addressed. Can we exploit the PHY caching to achieve linear capacity scaling with limited payload backhauls? If so, how much cache is needed? We show that the capacity of the backhaul-limited C-DWN indeed scales linearly with the number of BSs if the BS cache size is larger than a threshold that depends on the content popularity. We also quantify the throughput gain due to cache-induced MIMO cooperation over conventional caching schemes (which exploit purely the cached-assisted multihopping). Interestingly, the minimum BS cache size needed to achieve a significant cache-induced MIMO cooperation gain is the same as that needed to achieve the linear capacity scaling.Comment: 14 pages, 8 figures, accepted by IEEE/ACM Transactions on Networkin

    A Survey on MIMO Transmission with Discrete Input Signals: Technical Challenges, Advances, and Future Trends

    Full text link
    Multiple antennas have been exploited for spatial multiplexing and diversity transmission in a wide range of communication applications. However, most of the advances in the design of high speed wireless multiple-input multiple output (MIMO) systems are based on information-theoretic principles that demonstrate how to efficiently transmit signals conforming to Gaussian distribution. Although the Gaussian signal is capacity-achieving, signals conforming to discrete constellations are transmitted in practical communication systems. As a result, this paper is motivated to provide a comprehensive overview on MIMO transmission design with discrete input signals. We first summarize the existing fundamental results for MIMO systems with discrete input signals. Then, focusing on the basic point-to-point MIMO systems, we examine transmission schemes based on three most important criteria for communication systems: the mutual information driven designs, the mean square error driven designs, and the diversity driven designs. Particularly, a unified framework which designs low complexity transmission schemes applicable to massive MIMO systems in upcoming 5G wireless networks is provided in the first time. Moreover, adaptive transmission designs which switch among these criteria based on the channel conditions to formulate the best transmission strategy are discussed. Then, we provide a survey of the transmission designs with discrete input signals for multiuser MIMO scenarios, including MIMO uplink transmission, MIMO downlink transmission, MIMO interference channel, and MIMO wiretap channel. Additionally, we discuss the transmission designs with discrete input signals for other systems using MIMO technology. Finally, technical challenges which remain unresolved at the time of writing are summarized and the future trends of transmission designs with discrete input signals are addressed.Comment: 110 pages, 512 references, submit to Proceedings of the IEE

    How much feedback is required in MIMO Broadcast Channels?

    Full text link
    In this paper, a downlink communication system, in which a Base Station (BS) equipped with M antennas communicates with N users each equipped with K receive antennas (KMK \leq M), is considered. It is assumed that the receivers have perfect Channel State Information (CSI), while the BS only knows the partial CSI, provided by the receivers via feedback. The minimum amount of feedback required at the BS, to achieve the maximum sum-rate capacity in the asymptotic case of NN \to \infty and different ranges of SNR is studied. In the fixed and low SNR regimes, it is demonstrated that to achieve the maximum sum-rate, an infinite amount of feedback is required. Moreover, in order to reduce the gap to the optimum sum-rate to zero, in the fixed SNR regime, the minimum amount of feedback scales as θ(lnlnlnN)\theta(\ln \ln \ln N), which is achievable by the Random Beam-Forming scheme proposed in [14]. In the high SNR regime, two cases are considered; in the case of K<MK < M, it is proved that the minimum amount of feedback bits to reduce the gap between the achievable sum-rate and the maximum sum-rate to zero grows logaritmically with SNR, which is achievable by the "Generalized Random Beam-Forming" scheme, proposed in [18]. In the case of K=MK = M, it is shown that by using the Random Beam-Forming scheme and the total amount of feedback not growing with SNR, the maximum sum-rate capacity is achieved.Comment: Submitted to IEEE Trans. on Inform. Theor

    Cross-Layer Optimization of MIMO-Based Mesh Networks with Gaussian Vector Broadcast Channels

    Full text link
    MIMO technology is one of the most significant advances in the past decade to increase channel capacity and has a great potential to improve network capacity for mesh networks. In a MIMO-based mesh network, the links outgoing from each node sharing the common communication spectrum can be modeled as a Gaussian vector broadcast channel. Recently, researchers showed that ``dirty paper coding'' (DPC) is the optimal transmission strategy for Gaussian vector broadcast channels. So far, there has been little study on how this fundamental result will impact the cross-layer design for MIMO-based mesh networks. To fill this gap, we consider the problem of jointly optimizing DPC power allocation in the link layer at each node and multihop/multipath routing in a MIMO-based mesh networks. It turns out that this optimization problem is a very challenging non-convex problem. To address this difficulty, we transform the original problem to an equivalent problem by exploiting the channel duality. For the transformed problem, we develop an efficient solution procedure that integrates Lagrangian dual decomposition method, conjugate gradient projection method based on matrix differential calculus, cutting-plane method, and subgradient method. In our numerical example, it is shown that we can achieve a network performance gain of 34.4% by using DPC

    Distributed User Scheduling for MIMO-Y Channel

    Full text link
    In this paper, distributed user scheduling schemes are proposed for the multi-user MIMO-Y channel, where three NTN_{T}-antenna users (NT=2N,3NN_{T}=2N,\,3N) are selected from three clusters to exchange information via an NRN_{R}-antenna amplify-and-forward (AF) relay (NR=3NN_{R}=3N), and N1N\geq1 represents the number of data stream(s) of each unicast transmission within the MIMO-Y channel. The proposed schemes effectively harvest multi-user diversity (MuD) without the need of global channel state information (CSI) or centralized computations. In particular, a novel reference signal space (RSS) is proposed to enable the distributed scheduling for both cluster-wise (CS) and group-wise (GS) patterns. The minimum user-antenna (Min-UA) transmission with NT=2NN_{T}=2N is first considered. Next, we consider an equal number of relay and user antenna (ER-UA) transmission with NT=3N{N_{T}=3N}, with the aim of reducing CSI overhead as compared to Min-UA. For ER-UA transmission, the achievable MuD orders of the proposed distributed scheduling schemes are analytically derived, which proves the superiority and optimality of the proposed RSS-based distributed scheduling. These results reveal some fundamental behaviors of MuD and the performance-complexity tradeoff of user scheduling schemes in the MIMO-Y channel

    Large-System Analysis of Joint User Selection and Vector Precoding with Zero-Forcing Transmit Beamforming for MIMO Broadcast Channels

    Full text link
    Multiple-input multiple-output (MIMO) broadcast channels (BCs) (MIMO-BCs) with perfect channel state information (CSI) at the transmitter are considered. As joint user selection (US) and vector precoding (VP) (US-VP) with zero-forcing transmit beamforming (ZF-BF), US and continuous VP (CVP) (US-CVP) and data-dependent US (DD-US) are investigated. The replica method, developed in statistical physics, is used to analyze the energy penalties for the two US-VP schemes in the large-system limit, where the number of users, the number of selected users, and the number of transmit antennas tend to infinity with their ratios kept constant. Four observations are obtained in the large-system limit: First, the assumptions of replica symmetry (RS) and 1-step replica symmetry breaking (1RSB) for DD-US can provide acceptable approximations for low and moderate system loads, respectively. Secondly, DD-US outperforms CVP with random US in terms of the energy penalty for low-to-moderate system loads. Thirdly, the asymptotic energy penalty of DD-US is indistinguishable from that of US-CVP for low system loads. Finally, a greedy algorithm of DD-US proposed in authors' previous work can achieve nearly optimal performance for low-to-moderate system loads.Comment: submitted to ISITA201

    MIMO Relaying Broadcast Channels with Linear Precoding and Quantized Channel State Information Feedback

    Full text link
    Multi-antenna relaying has emerged as a promising technology to enhance the system performance in cellular networks. However, when precoding techniques are utilized to obtain multi-antenna gains, the system generally requires channel state information (CSI) at the transmitters. We consider a linear precoding scheme in a MIMO relaying broadcast channel with quantized CSI feedback from both two-hop links. With this scheme, each remote user feeds back its quantized CSI to the relay, and the relay sends back the quantized precoding information to the base station (BS). An upper bound on the rate loss due to quantized channel knowledge is first characterized. Then, in order to maintain the rate loss within a predetermined gap for growing SNRs, a strategy of scaling quantization quality of both two-hop links is proposed. It is revealed that the numbers of feedback bits of both links should scale linearly with the transmit power at the relay, while only the bit number of feedback from the relay to the BS needs to grow with the increasing transmit power at the BS. Numerical results are provided to verify the proposed strategy for feedback quality control.Comment: 13pages appeared in IEEE Transactions on Signal Processin

    User Selection in MIMO Interfering Broadcast Channels

    Full text link
    Interference alignment aims to achieve maximum degrees of freedom in an interference system. For achieving Interference alignment in interfering broadcast systems a closed-form solution is proposed in [1] which is an extension of the grouping scheme in [2]. In a downlink scenario where there are a large number of users, the base station is required to select a subset of users such that the sum rate is maximized. To search for the optimal user subset using brute-force approach is computationally exhaustive because of the large number of possible user subset combinations. We propose a user selection algorithm achieving sum rate close to that of optimal solution. The algorithm employs coordinate ascent approach and exploits orthogonality between the desired signal space and the interference channel space in the reciprocal system to select the user at each step. For the sake of completeness, we have also extended the sum rate approach based algorithm to Interfering broadcast channel. The complexity of both these algorithms is shown to be linear with respect to the total number of users as compared to exponential in brute-force search.Comment: 9 pages, 5 figure

    Joint Source and Relay Precoding Designs for MIMO Two-Way Relaying Based on MSE Criterion

    Full text link
    Properly designed precoders can significantly improve the spectral efficiency of multiple-input multiple-output (MIMO) relay systems. In this paper, we investigate joint source and relay precoding design based on the mean-square-error (MSE) criterion in MIMO two-way relay systems, where two multi-antenna source nodes exchange information via a multi-antenna amplify-and-forward relay node. This problem is non-convex and its optimal solution remains unsolved. Aiming to find an efficient way to solve the problem, we first decouple the primal problem into three tractable sub-problems, and then propose an iterative precoding design algorithm based on alternating optimization. The solution to each sub-problem is optimal and unique, thus the convergence of the iterative algorithm is guaranteed. Secondly, we propose a structured precoding design to lower the computational complexity. The proposed precoding structure is able to parallelize the channels in the multiple access (MAC) phase and broadcast (BC) phase. It thus reduces the precoding design to a simple power allocation problem. Lastly, for the special case where only a single data stream is transmitted from each source node, we present a source-antenna-selection (SAS) based precoding design algorithm. This algorithm selects only one antenna for transmission from each source and thus requires lower signalling overhead. Comprehensive simulation is conducted to evaluate the effectiveness of all the proposed precoding designs.Comment: 32 pages, 10 figure

    User-Antenna Selection for Physical-Layer Network Coding based on Euclidean Distance

    Full text link
    In this paper, we present the error performance analysis of a multiple-input multiple-output (MIMO) physical-layer network coding (PNC) system with two different user-antenna selection (AS) schemes in asymmetric channel conditions. For the first antenna selection scheme (AS1), where the user-antenna is selected in order to maximize the overall channel gain between the user and the relay, we give an explicit analytical proof that for binary modulations, the system achieves full diversity order of min(NA,NB)×NRmin(N_A , N_B ) \times N_R in the multiple-access (MA) phase, where NAN_A, NBN_B and NRN_R denote the number of antennas at user AA, user BB and relay RR respectively. We present a detailed investigation of the diversity order for the MIMO-PNC system with AS1 in the MA phase for any modulation order. A tight closed-form upper bound on the average SER is also derived for the special case when NR=1N_R = 1, which is valid for any modulation order. We show that in this case the system fails to achieve transmit diversity in the MA phase, as the system diversity order drops to 11 irrespective of the number of transmit antennas at the user nodes. Additionally, we propose a Euclidean distance (ED) based user-antenna selection scheme (AS2) which outperforms the first scheme in terms of error performance. Moreover, by deriving upper and lower bounds on the diversity order for the MIMO-PNC system with AS2, we show that this system enjoys both transmit and receive diversity, achieving full diversity order of min(NA,NB)×NR\min(N_A, N_B) \times N_R in the MA phase for any modulation order. Monte Carlo simulations are provided which confirm the correctness of the derived analytical results.Comment: IEEE Transactions on Communications. arXiv admin note: text overlap with arXiv:1709.0445
    corecore