61 research outputs found

    Objective assessment of region of interest-aware adaptive multimedia streaming quality

    Get PDF
    Adaptive multimedia streaming relies on controlled adjustment of content bitrate and consequent video quality variation in order to meet the bandwidth constraints of the communication link used for content delivery to the end-user. The values of the easy to measure network-related Quality of Service metrics have no direct relationship with the way moving images are perceived by the human viewer. Consequently variations in the video stream bitrate are not clearly linked to similar variation in the user perceived quality. This is especially true if some human visual system-based adaptation techniques are employed. As research has shown, there are certain image regions in each frame of a video sequence on which the users are more interested than in the others. This paper presents the Region of Interest-based Adaptive Scheme (ROIAS) which adjusts differently the regions within each frame of the streamed multimedia content based on the user interest in them. ROIAS is presented and discussed in terms of the adjustment algorithms employed and their impact on the human perceived video quality. Comparisons with existing approaches, including a constant quality adaptation scheme across the whole frame area, are performed employing two objective metrics which estimate user perceived video quality

    Особливості розробки інформаційної асистивної технології навчання осіб з особливими потребами

    Get PDF
    У статті розглянуті особливості розробки інформаційної асистивної технології навчання осіб з особливими потребами.The article describes the features of the development of assistive information technology training for people with special needs

    A perceptual comparison of empirical and predictive region-of-interest video

    Get PDF
    When viewing multimedia presentations, a user only attends to a relatively small part of the video display at any one point in time. By shifting allocation of bandwidth from peripheral areas to those locations where a user’s gaze is more likely to rest, attentive displays can be produced. Attentive displays aim to reduce resource requirements while minimizing negative user perception—understood in this paper as not only a user’s ability to assimilate and understand information but also his/her subjective satisfaction with the video content. This paper introduces and discusses a perceptual comparison between two region-of-interest display (RoID) adaptation techniques. A RoID is an attentive display where bandwidth has been preallocated around measured or highly probable areas of user gaze. In this paper, video content was manipulated using two sources of data: empirical measured data (captured using eye-tracking technology) and predictive data (calculated from the physical characteristics of the video data). Results show that display adaptation causes significant variation in users’ understanding of specific multimedia content. Interestingly, RoID adaptation and the type of video being presented both affect user perception of video quality. Moreover, the use of frame rates less than 15 frames per second, for any video adaptation technique, caused a significant reduction in user perceived quality, suggesting that although users are aware of video quality reduction, it does impact level of information assimilation and understanding. Results also highlight that user level of enjoyment is significantly affected by the type of video yet is not as affected by the quality or type of video adaptation—an interesting implication in the field of entertainment

    Gaze-contingent training enhances perceptual skill acquisition.

    Get PDF
    The purpose of this study was to determine whether decision-making skill in perceptual-cognitive tasks could be enhanced using a training technique that impaired selective areas of the visual field. Recreational basketball players performed perceptual training over 3 days while viewing with a gaze-contingent manipulation that displayed either (a) a moving window (clear central and blurred peripheral vision), (b) a moving mask (blurred central and clear peripheral vision), or (c) full (unrestricted) vision. During the training, participants watched video clips of basketball play and at the conclusion of each clip made a decision about to which teammate the player in possession of the ball should pass. A further control group watched unrelated videos with full vision. The effects of training were assessed using separate tests of decision-making skill conducted in a pretest, posttest, and 2-week retention test. The accuracy of decision making was greater in the posttest than in the pretest for all three intervention groups when compared with the control group. Remarkably, training with blurred peripheral vision resulted in a further improvement in performance from posttest to retention test that was not apparent for the other groups. The type of training had no measurable impact on the visual search strategies of the participants, and so the training improvements appear to be grounded in changes in information pickup. The findings show that learning with impaired peripheral vision offers a promising form of training to support improvements in perceptual skill

    Region of interest-based adaptive multimedia streaming scheme

    Get PDF
    Adaptive multimedia streaming aims at adjusting the transmitted content based on the available bandwidth such as losses that often severely affect the end-user perceived quality are minimized and consequently the transmission quality increases. Current solutions affect equally the whole viewing area of the multimedia frames, despite research showing that there are regions on which the viewers are more interested in than on others. This paper presents a novel region of interest-based adaptive scheme (ROIAS) for multimedia streaming that when performing transmission-related quality adjustments, selectively affects the quality of those regions of the image the viewers are the least interested in. As the quality of the regions the viewers are the most interested in will not change (or will involve little change),the proposed scheme provides higher overall end-user perceived quality than any of the existing adaptive solutions

    The contributions of central and peripheral vision to expertise in basketball: How blur helps to provide a clearer picture

    Get PDF
    The main purpose of this study was to examine the relative roles of central and peripheral vision when performing a dynamic forced-choice task. We did so by using a gaze-contingent display with different levels of blur in an effort to (a) test the limit of visual resolution necessary for information pick-up in each of these sectors of the visual field and, as a result, to (b) develop a more natural means of gaze-contingent display using a blurred central or peripheral visual field. The expert advantage seen in usual whole field visual presentation persists despite surprisingly high levels of impairment to central or peripheral vision. Consistent with the well-established central/peripheral differences in sensitivity to spatial frequency, high levels of blur did not prevent better-than-chance performance by skilled players when peripheral information was blurred, but they did affect response accuracy when impairing central vision. Blur was found to always alter the pattern of eye movements before it decreased task performance. The evidence accumulated across the 4 experiments provides new insights into several key questions surrounding the role that different sectors of the visual field play in expertise in dynamic, time-constrained tasks

    Saccade Landing Point Prediction Based on Fine-Grained Learning Method

    Full text link
    The landing point of a saccade defines the new fixation region, the new region of interest. We asked whether it was possible to predict the saccade landing point early in this very fast eye movement. This work proposes a new algorithm based on LSTM networks and a fine-grained loss function for saccade landing point prediction in real-world scenarios. Predicting the landing point is a critical milestone toward reducing the problems caused by display-update latency in gaze-contingent systems that make real-time changes in the display based on eye tracking. Saccadic eye movements are some of the fastest human neuro-motor activities with angular velocities of up to 1,000°/s. We present a comprehensive analysis of the performance of our method using a database with almost 220,000 saccades from 75 participants captured during natural viewing of videos. We include a comparison with state-of-the-art saccade landing point prediction algorithms. The results obtained using our proposed method outperformed existing approaches with improvements of up to 50% error reduction. Finally, we analyzed some factors that affected prediction errors including duration, length, age, and user intrinsic characteristics.This work was supported in part by the Project BIBECA through MINECO/FEDER under Grant RTI2018-101248-B-100, in part by the Jose Castillejo Program through MINECO under Grant CAS17/00117, and in part by the National Institutes of Health (NIH) under Grant P30EY003790 and Grant R21EY023724
    corecore