197,415 research outputs found

    Resonating Experiences of Self and Others enabled by a Tangible Somaesthetic Design

    Get PDF
    Digitalization is penetrating every aspect of everyday life including a human's heart beating, which can easily be sensed by wearable sensors and displayed for others to see, feel, and potentially "bodily resonate" with. Previous work in studying human interactions and interaction designs with physiological data, such as a heart's pulse rate, have argued that feeding it back to the users may, for example support users' mindfulness and self-awareness during various everyday activities and ultimately support their wellbeing. Inspired by Somaesthetics as a discipline, which focuses on an appreciation of the living body's role in all our experiences, we designed and explored mobile tangible heart beat displays, which enable rich forms of bodily experiencing oneself and others in social proximity. In this paper, we first report on the design process of tangible heart displays and then present results of a field study with 30 pairs of participants. Participants were asked to use the tangible heart displays during watching movies together and report their experience in three different heart display conditions (i.e., displaying their own heart beat, their partner's heart beat, and watching a movie without a heart display). We found, for example that participants reported significant effects in experiencing sensory immersion when they felt their own heart beats compared to the condition without any heart beat display, and that feeling their partner's heart beats resulted in significant effects on social experience. We refer to resonance theory to discuss the results, highlighting the potential of how ubiquitous technology could utilize physiological data to provide resonance in a modern society facing social acceleration.Comment: 18 page

    Determining what people feel and think when interacting with humans and machines

    Get PDF
    Any interactive software program must interpret the users’ actions and come up with an appropriate response that is intelligable and meaningful to the user. In most situations, the options of the user are determined by the software and hardware and the actions that can be carried out are unambiguous. The machine knows what it should do when the user carries out an action. In most cases, the user knows what he has to do by relying on conventions which he may have learned by having had a look at the instruction manual, having them seen performed by somebody else, or which he learned by modifying a previously learned convention. Some, or most, of the times he just finds out by trial and error. In user-friendly interfaces, the user knows, without having to read extensive manuals, what is expected from him and how he can get the machine to do what he wants. An intelligent interface is so-called, because it does not assume the same kind of programming of the user by the machine, but the machine itself can figure out what the user wants and how he wants it without the user having to take all the trouble of telling it to the machine in the way the machine dictates but being able to do it in his own words. Or perhaps by not using any words at all, as the machine is able to read off the intentions of the user by observing his actions and expressions. Ideally, the machine should be able to determine what the user wants, what he expects, what he hopes will happen, and how he feels

    Exploring the Potential of 3D Visualization Techniques for Usage in Collaborative Design

    Get PDF
    Best practice for collaborative design demands good interaction between its collaborators. The capacity to share common knowledge about design models at hand is a basic requirement. With current advancing technologies gathering collective knowledge is more straightforward, as the dialog between experts can be supported better. The potential for 3D visualization techniques to become the right support tool for collaborative design is explored. Special attention is put on the possible usage for remote collaboration. The opportunities for current state-of-the-art visualization techniques from stereoscopic vision to holographic displays are researched. A classification of the various systems is explored with respect to their tangible usage for augmented reality. Appropriate interaction methods can be selected based on the usage scenario

    Visual and interactive exploration of point data

    Get PDF
    Point data, such as Unit Postcodes (UPC), can provide very detailed information at fine scales of resolution. For instance, socio-economic attributes are commonly assigned to UPC. Hence, they can be represented as points and observable at the postcode level. Using UPC as a common field allows the concatenation of variables from disparate data sources that can potentially support sophisticated spatial analysis. However, visualising UPC in urban areas has at least three limitations. First, at small scales UPC occurrences can be very dense making their visualisation as points difficult. On the other hand, patterns in the associated attribute values are often hardly recognisable at large scales. Secondly, UPC can be used as a common field to allow the concatenation of highly multivariate data sets with an associated postcode. Finally, socio-economic variables assigned to UPC (such as the ones used here) can be non-Normal in their distributions as a result of a large presence of zero values and high variances which constrain their analysis using traditional statistics. This paper discusses a Point Visualisation Tool (PVT), a proof-of-concept system developed to visually explore point data. Various well-known visualisation techniques were implemented to enable their interactive and dynamic interrogation. PVT provides multiple representations of point data to facilitate the understanding of the relations between attributes or variables as well as their spatial characteristics. Brushing between alternative views is used to link several representations of a single attribute, as well as to simultaneously explore more than one variable. PVT’s functionality shows how the use of visual techniques embedded in an interactive environment enable the exploration of large amounts of multivariate point data

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Interaction With Tilting Gestures In Ubiquitous Environments

    Full text link
    In this paper, we introduce a tilting interface that controls direction based applications in ubiquitous environments. A tilt interface is useful for situations that require remote and quick interactions or that are executed in public spaces. We explored the proposed tilting interface with different application types and classified the tilting interaction techniques. Augmenting objects with sensors can potentially address the problem of the lack of intuitive and natural input devices in ubiquitous environments. We have conducted an experiment to test the usability of the proposed tilting interface to compare it with conventional input devices and hand gestures. The experiment results showed greater improvement of the tilt gestures in comparison with hand gestures in terms of speed, accuracy, and user satisfaction.Comment: 13 pages, 10 figure
    • 

    corecore