2,850 research outputs found

    Policy Design for Controlling Set-Point Temperature of ACs in Shared Spaces of Buildings

    Full text link
    Air conditioning systems are responsible for the major percentage of energy consumption in buildings. Shared spaces constitute considerable office space area, in which most office employees perform their meetings and daily tasks, and therefore the ACs in these areas have significant impact on the energy usage of the entire office building. The cost of this energy consumption, however, is not paid by the shared space users, and the AC's temperature set-point is not determined based on the users' preferences. This latter factor is compounded by the fact that different people may have different choices of temperature set-points and sensitivities to change of temperature. Therefore, it is a challenging task to design an office policy to decide on a particular set-point based on such a diverse preference set. As a result, users are not aware of the energy consumption in shared spaces, which may potentially increase the energy wastage and related cost of office buildings. In this context, this paper proposes an energy policy for an office shared space by exploiting an established temperature control mechanism. In particular, we choose meeting rooms in an office building as the test case and design a policy according to which each user of the room can give a preference on the temperature set-point and is paid for felt discomfort if the set-point is not fixed according to the given preference. On the other hand, users who enjoy the thermal comfort compensate the other users of the room. Thus, the policy enables the users to be cognizant and responsible for the payment on the energy consumption of the office space they are sharing, and at the same time ensures that the users are satisfied either via thermal comfort or through incentives. The policy is also shown to be beneficial for building management. Through experiment based case studies, we show the effectiveness of the proposed policy.Comment: Journal paper accepted in Energy & Buildings (Elsevier

    Using Personal Environmental Comfort Systems to Mitigate the Impact of Occupancy Prediction Errors on HVAC Performance

    Full text link
    Heating, Ventilation and Air Conditioning (HVAC) consumes a significant fraction of energy in commercial buildings. Hence, the use of optimization techniques to reduce HVAC energy consumption has been widely studied. Model predictive control (MPC) is one state of the art optimization technique for HVAC control which converts the control problem to a sequence of optimization problems, each over a finite time horizon. In a typical MPC, future system state is estimated from a model using predictions of model inputs, such as building occupancy and outside air temperature. Consequently, as prediction accuracy deteriorates, MPC performance--in terms of occupant comfort and building energy use--degrades. In this work, we use a custom-built building thermal simulator to systematically investigate the impact of occupancy prediction errors on occupant comfort and energy consumption. Our analysis shows that in our test building, as occupancy prediction error increases from 5\% to 20\% the performance of an MPC-based HVAC controller becomes worse than that of even a simple static schedule. However, when combined with a personal environmental control (PEC) system, HVAC controllers are considerably more robust to prediction errors. Thus, we quantify the effectiveness of PECs in mitigating the impact of forecast errors on MPC control for HVAC systems.Comment: 21 pages, 13 figure

    Wireless sensors and IoT platform for intelligent HVAC control

    Get PDF
    Energy consumption of buildings (residential and non-residential) represents approximately 40% of total world electricity consumption, with half of this energy consumed by HVAC systems. Model-Based Predictive Control (MBPC) is perhaps the technique most often proposed for HVAC control, since it offers an enormous potential for energy savings. Despite the large number of papers on this topic during the last few years, there are only a few reported applications of the use of MBPC for existing buildings, under normal occupancy conditions and, to the best of our knowledge, no commercial solution yet. A marketable solution has been recently presented by the authors, coined the IMBPC HVAC system. This paper describes the design, prototyping and validation of two components of this integrated system, the Self-Powered Wireless Sensors and the IOT platform developed. Results for the use of IMBPC in a real building under normal occupation demonstrate savings in the electricity bill while maintaining thermal comfort during the whole occupation schedule.QREN SIDT [38798]; Portuguese Foundation for Science & Technology, through IDMEC, under LAETA [ID/EMS/50022/2013
    • …
    corecore