57 research outputs found

    PHYSICAL LAYER SECURITY IN THE 5G HETEROGENEOUS WIRELESS SYSTEM WITH IMPERFECT CSI

    Get PDF
    5G is expected to serve completely heterogeneous scenarios where devices with low or high software and hardware complexity will coexist. This entails a security challenge because low complexity devices such as IoT sensors must still have secrecy in their communications. This project proposes tools to maximize the secrecy rate in a scenario with legitimate users and eavesdroppers considering: i) the limitation that low complexity users have in computational power and ii) the eavesdroppers? unwillingness to provide their channel state information to the base station. The tools have been designed based on the physical layer security field and solve the resource allocation from two different approaches that are suitable in different use cases: i) using convex optimization theory or ii) using classification neural networks. Results show that, while the convex approach provides the best secrecy performance, the learning approach is a good alternative for dynamic scenarios or when wanting to save transmitting power

    Metric learning with convex optimization

    Get PDF

    Joint Waveform and Clustering Design for Coordinated Multi-point DFRC Systems

    Get PDF
    To improve both sensing and communication performances, this paper proposes a coordinated multi-point (CoMP) transmission design for a dual-functional radar-communication (DFRC) system. In the proposed CoMP-DFRC system, the central processor (CP) coordinates multiple base stations (BSs) to transmit both the communication signal and the dedicated probing signal. The communication performance and the sensing performance are both evaluated by the signal-to-interference-plus-noise ratio (SINR). Given the limited backhaul capacity, we study the waveform and clustering design from both the radar-centric perspective and the communication-centric perspective. Dinkelbach’s transform is adopted to handle the single-ratio fractional objective for the radar-centric problem. For the communication-centric problem, we adopt quadratic transform to convexitify the multi-ratio fractional objective. Then, the rank-one constraint of communication beamforming vector is relaxed by semidefinite relaxation (SDR), and the tightness of SDR is further proved to guarantee the optimal waveform design with fixed clustering. For dynamic clustering, equivalent continuous functions are used to represent the non-continuous clustering variables. Successive convex approximation (SCA) is further utilized to convexitify the equivalent functions. Simulation results are provided to verify the effectiveness of all proposed designs

    Centralized and partial decentralized design for the Fog Radio Access Network

    Get PDF
    Fog Radio Access Network (F-RAN) has been shown to be a promising network architecture for the 5G network. With F-RAN, certain amount of signal processing functionalities are pushed from the Base Station (BS) on the network edge to the BaseBand Units (BBU) pool located remotely in the cloud. Hence, partially centralized network operation and management can be achieved, which can greatly improve the energy and spectral efficiency of the network, in order to meet the requirements of 5G. In this work, the optimal design for both uplink and downlink of F-RAN are intensively investigated
    • …
    corecore