1,442 research outputs found

    Towards Intelligent Telerobotics: Visualization and Control of Remote Robot

    Get PDF
    Human-machine cooperative or co-robotics has been recognized as the next generation of robotics. In contrast to current systems that use limited-reasoning strategies or address problems in narrow contexts, new co-robot systems will be characterized by their flexibility, resourcefulness, varied modeling or reasoning approaches, and use of real-world data in real time, demonstrating a level of intelligence and adaptability seen in humans and animals. The research I focused is in the two sub-field of co-robotics: teleoperation and telepresence. We firstly explore the ways of teleoperation using mixed reality techniques. I proposed a new type of display: hybrid-reality display (HRD) system, which utilizes commodity projection device to project captured video frame onto 3D replica of the actual target surface. It provides a direct alignment between the frame of reference for the human subject and that of the displayed image. The advantage of this approach lies in the fact that no wearing device needed for the users, providing minimal intrusiveness and accommodating users eyes during focusing. The field-of-view is also significantly increased. From a user-centered design standpoint, the HRD is motivated by teleoperation accidents, incidents, and user research in military reconnaissance etc. Teleoperation in these environments is compromised by the Keyhole Effect, which results from the limited field of view of reference. The technique contribution of the proposed HRD system is the multi-system calibration which mainly involves motion sensor, projector, cameras and robotic arm. Due to the purpose of the system, the accuracy of calibration should also be restricted within millimeter level. The followed up research of HRD is focused on high accuracy 3D reconstruction of the replica via commodity devices for better alignment of video frame. Conventional 3D scanner lacks either depth resolution or be very expensive. We proposed a structured light scanning based 3D sensing system with accuracy within 1 millimeter while robust to global illumination and surface reflection. Extensive user study prove the performance of our proposed algorithm. In order to compensate the unsynchronization between the local station and remote station due to latency introduced during data sensing and communication, 1-step-ahead predictive control algorithm is presented. The latency between human control and robot movement can be formulated as a linear equation group with a smooth coefficient ranging from 0 to 1. This predictive control algorithm can be further formulated by optimizing a cost function. We then explore the aspect of telepresence. Many hardware designs have been developed to allow a camera to be placed optically directly behind the screen. The purpose of such setups is to enable two-way video teleconferencing that maintains eye-contact. However, the image from the see-through camera usually exhibits a number of imaging artifacts such as low signal to noise ratio, incorrect color balance, and lost of details. Thus we develop a novel image enhancement framework that utilizes an auxiliary color+depth camera that is mounted on the side of the screen. By fusing the information from both cameras, we are able to significantly improve the quality of the see-through image. Experimental results have demonstrated that our fusion method compares favorably against traditional image enhancement/warping methods that uses only a single image

    TOWARD INTELLIGENT WELDING BY BUILDING ITS DIGITAL TWIN

    Get PDF
    To meet the increasing requirements for production on individualization, efficiency and quality, traditional manufacturing processes are evolving to smart manufacturing with the support from the information technology advancements including cyber-physical systems (CPS), Internet of Things (IoT), big industrial data, and artificial intelligence (AI). The pre-requirement for integrating with these advanced information technologies is to digitalize manufacturing processes such that they can be analyzed, controlled, and interacted with other digitalized components. Digital twin is developed as a general framework to do that by building the digital replicas for the physical entities. This work takes welding manufacturing as the case study to accelerate its transition to intelligent welding by building its digital twin and contributes to digital twin in the following two aspects (1) increasing the information analysis and reasoning ability by integrating deep learning; (2) enhancing the human user operative ability to physical welding manufacturing via digital twins by integrating human-robot interaction (HRI). Firstly, a digital twin of pulsed gas tungsten arc welding (GTAW-P) is developed by integrating deep learning to offer the strong feature extraction and analysis ability. In such a system, the direct information including weld pool images, arc images, welding current and arc voltage is collected by cameras and arc sensors. The undirect information determining the welding quality, i.e., weld joint top-side bead width (TSBW) and back-side bead width (BSBW), is computed by a traditional image processing method and a deep convolutional neural network (CNN) respectively. Based on that, the weld joint geometrical size is controlled to meet the quality requirement in various welding conditions. In the meantime, this developed digital twin is visualized to offer a graphical user interface (GUI) to human users for their effective and intuitive perception to physical welding processes. Secondly, in order to enhance the human operative ability to the physical welding processes via digital twins, HRI is integrated taking virtual reality (VR) as the interface which could transmit the information bidirectionally i.e., transmitting the human commends to welding robots and visualizing the digital twin to human users. Six welders, skilled and unskilled, tested this system by completing the same welding job but demonstrate different patterns and resulted welding qualities. To differentiate their skill levels (skilled or unskilled) from their demonstrated operations, a data-driven approach, FFT-PCA-SVM as a combination of fast Fourier transform (FFT), principal component analysis (PCA), and support vector machine (SVM) is developed and demonstrates the 94.44% classification accuracy. The robots can also work as an assistant to help the human welders to complete the welding tasks by recognizing and executing the intended welding operations. This is done by a developed human intention recognition algorithm based on hidden Markov model (HMM) and the welding experiments show that developed robot-assisted welding can help to improve welding quality. To further take the advantages of the robots i.e., movement accuracy and stability, the role of the robot upgrades to be a collaborator from an assistant to complete a subtask independently i.e., torch weaving and automatic seam tracking in weaving GTAW. The other subtask i.e., welding torch moving along the weld seam is completed by the human users who can adjust the travel speed to control the heat input and ensure the good welding quality. By doing that, the advantages of humans (intelligence) and robots (accuracy and stability) are combined together under this human-robot collaboration framework. The developed digital twin for welding manufacturing helps to promote the next-generation intelligent welding and can be applied in other similar manufacturing processes easily after small modifications including painting, spraying and additive manufacturing

    Design and Simulation of a Supervisory Control System for Hybrid Manufacturing

    Get PDF
    The research teams of Dr. Bill Hamel, Dr. Bradley Jared and Dr. Tony Schmitz were tasked by the Office of Naval Research to create a hybrid manufacturing process for a reduced scale model of a naval ship propeller. The base structure of the propeller is created using Wire Arc Additive Manufacturing (WAAM), which is then scanned to compare created geometry to desired geometry. The propeller is then machined down to match the desired geometry. This process is iterated upon until the final product meets design tolerances. Due to the complex nature and numerous industrial machines used in the process, it is desirable to create a control system for Supervisory Control and Data Acquisition (SCADA). This supervisory control system is necessary in order to ensure safe operations and logging of system data to document successful trials. The goal of this thesis is to outline the design and simulation of a supervisory control system for this hybrid manufacturing cell. The design and implementation is focused on a simulation of the control of relevant boolean states of the system. This is accomplished through a Human Machine Interface (HMI) created in LabVIEW accompanied by appropriate data flow diagrams, models and communication specifications between machines. The creation of a digital twin of this hybrid manufacturing system was successful and useful in the implementation of physical components

    Study of Augmented Reality based manufacturing for further integration of quality control 4.0: a systematic literature review

    Get PDF
    Augmented Reality (AR) has gradually become a mainstream technology enabling Industry 4.0 and its maturity has also grown over time. AR has been applied to support different processes on the shop-floor level, such as assembly, maintenance, etc. As various processes in manufacturing require high quality and near-zero error rates to ensure the demands and safety of end-users, AR can also equip operators with immersive interfaces to enhance productivity, accuracy and autonomy in the quality sector. However, there is currently no systematic review paper about AR technology enhancing the quality sector. The purpose of this paper is to conduct a systematic literature review (SLR) to conclude about the emerging interest in using AR as an assisting technology for the quality sector in an industry 4.0 context. Five research questions (RQs), with a set of selection criteria, are predefined to support the objectives of this SLR. In addition, different research databases are used for the paper identification phase following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) methodology to find the answers for the predefined RQs. It is found that, in spite of staying behind the assembly and maintenance sector in terms of AR-based solutions, there is a tendency towards interest in developing and implementing AR-assisted quality applications. There are three main categories of current AR-based solutions for quality sector, which are AR-based apps as a virtual Lean tool, AR-assisted metrology and AR-based solutions for in-line quality control. In this SLR, an AR architecture layer framework has been improved to classify articles into different layers which are finally integrated into a systematic design and development methodology for the development of long-term AR-based solutions for the quality sector in the future

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    Research reports: 1991 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    The basic objectives of the programs, which are in the 28th year of operation nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The faculty fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This is a compilation of their research reports for summer 1991

    1992 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    For the 28th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama and MSFC during the period June 1, 1992 through August 7, 1992. Operated under the auspices of the American Society for Engineering Education, the MSFC program, was well as those at other centers, was sponsored by the Office of Educational Affairs, NASA Headquarters, Washington, DC. The basic objectives of the programs, which are the 29th year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers

    Designing AI Support for Human Involvement in AI-assisted Decision Making: A Taxonomy of Human-AI Interactions from a Systematic Review

    Full text link
    Efforts in levering Artificial Intelligence (AI) in decision support systems have disproportionately focused on technological advancements, often overlooking the alignment between algorithmic outputs and human expectations. To address this, explainable AI promotes AI development from a more human-centered perspective. Determining what information AI should provide to aid humans is vital, however, how the information is presented, e. g., the sequence of recommendations and the solicitation of interpretations, is equally crucial. This motivates the need to more precisely study Human-AI interaction as a pivotal component of AI-based decision support. While several empirical studies have evaluated Human-AI interactions in multiple application domains in which interactions can take many forms, there is not yet a common vocabulary to describe human-AI interaction protocols. To address this gap, we describe the results of a systematic review of the AI-assisted decision making literature, analyzing 105 selected articles, which grounds the introduction of a taxonomy of interaction patterns that delineate various modes of human-AI interactivity. We find that current interactions are dominated by simplistic collaboration paradigms and report comparatively little support for truly interactive functionality. Our taxonomy serves as a valuable tool to understand how interactivity with AI is currently supported in decision-making contexts and foster deliberate choices of interaction designs
    • …
    corecore