2,191 research outputs found

    I2PA : An Efficient ABC for IoT

    Get PDF
    Internet of Things (IoT) is very attractive because of its promises. However, it brings many challenges, mainly issues about privacy preserving and lightweight cryptography. Many schemes have been designed so far but none of them simultaneously takes into account these aspects. In this paper, we propose an efficient ABC scheme for IoT devices. We use ECC without pairing, blind signing and zero knowledge proof. Our scheme supports block signing, selective disclosure and randomization. It provides data minimization and transactions' unlinkability. Our construction is efficient since smaller key size can be used and computing time can be reduced. As a result, it is a suitable solution for IoT devices characterized by three major constraints namely low energy power, small storage capacity and low computing power

    A Privacy Preserving Framework for RFID Based Healthcare Systems

    Get PDF
    RFID (Radio Frequency IDentification) is anticipated to be a core technology that will be used in many practical applications of our life in near future. It has received considerable attention within the healthcare for almost a decade now. The technology’s promise to efficiently track hospital supplies, medical equipment, medications and patients is an attractive proposition to the healthcare industry. However, the prospect of wide spread use of RFID tags in the healthcare area has also triggered discussions regarding privacy, particularly because RFID data in transit may easily be intercepted and can be send to track its user (owner). In a nutshell, this technology has not really seen its true potential in healthcare industry since privacy concerns raised by the tag bearers are not properly addressed by existing identification techniques. There are two major types of privacy preservation techniques that are required in an RFID based healthcare system—(1) a privacy preserving authentication protocol is required while sensing RFID tags for different identification and monitoring purposes, and (2) a privacy preserving access control mechanism is required to restrict unauthorized access of private information while providing healthcare services using the tag ID. In this paper, we propose a framework (PriSens-HSAC) that makes an effort to address the above mentioned two privacy issues. To the best of our knowledge, it is the first framework to provide increased privacy in RFID based healthcare systems, using RFID authentication along with access control technique

    A Light-Weight Group Signature Scheme for Wireless Networks Based-on BBS Short Group Signature

    Get PDF
    In the natural context of wireless network environment, the communications between wireless nodes are more easily observed for the goal of the network traffic analysis. Thus, to enable a secure and anonymous communication system from thwarting of such analysis attacks would be strongly desirable. In this paper, we propose a secure and anonymous communication system using pairing-based group signatures. The achievement of secure and anonymous communication is performed by allowing all valid member wireless nodes of a particular privilege group to authenticate each other without revealing their own identitie

    HIDING BEHIND THE CLOUDS: EFFICIENT, PRIVACY-PRESERVING QUERIES VIA CLOUD PROXIES

    Get PDF
    This project proposes PriView, a privacy-preserving technique for querying third-party ser- vices from mobile devices. Classical private information retrieval (PIR) schemes are diffi- cult to deploy and use, since they require the target service to be replicated and modified. To avoid this problem, PriView utilizes a novel, proxy-mediated form of PIR, in which the client device fetches XORs of dummy query responses from each of two proxies and combines them to produce the required result. Unlike conventional PIR, PriView does not require the third-party service to be replicated or modified in any way. We evaluated a PriView implementation for the Google Static Maps service utilizing an Android OS front- end and Amazon EC2 proxies. PriView is able to provide tunable confidentiality with low overhead, allowing bandwidth usage, power consumption, and end-to-end latency to scale sublinearly with the provided degree of confidentiality

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio
    • 

    corecore