2,866 research outputs found

    A New Look at Physical Layer Security, Caching, and Wireless Energy Harvesting for Heterogeneous Ultra-dense Networks

    Get PDF
    Heterogeneous ultra-dense networks enable ultra-high data rates and ultra-low latency through the use of dense sub-6 GHz and millimeter wave (mmWave) small cells with different antenna configurations. Existing work has widely studied spectral and energy efficiency in such networks and shown that high spectral and energy efficiency can be achieved. This article investigates the benefits of heterogeneous ultra-dense network architecture from the perspectives of three promising technologies, i.e., physical layer security, caching, and wireless energy harvesting, and provides enthusiastic outlook towards application of these technologies in heterogeneous ultra-dense networks. Based on the rationale of each technology, opportunities and challenges are identified to advance the research in this emerging network.Comment: Accepted to appear in IEEE Communications Magazin

    User Association in 5G Networks: A Survey and an Outlook

    Get PDF
    26 pages; accepted to appear in IEEE Communications Surveys and Tutorial

    Self-Sustaining Caching Stations: Towards Cost-Effective 5G-Enabled Vehicular Networks

    Full text link
    In this article, we investigate the cost-effective 5G-enabled vehicular networks to support emerging vehicular applications, such as autonomous driving, in-car infotainment and location-based road services. To this end, self-sustaining caching stations (SCSs) are introduced to liberate on-road base stations from the constraints of power lines and wired backhauls. Specifically, the cache-enabled SCSs are powered by renewable energy and connected to core networks through wireless backhauls, which can realize "drop-and-play" deployment, green operation, and low-latency services. With SCSs integrated, a 5G-enabled heterogeneous vehicular networking architecture is further proposed, where SCSs are deployed along roadside for traffic offloading while conventional macro base stations (MBSs) provide ubiquitous coverage to vehicles. In addition, a hierarchical network management framework is designed to deal with high dynamics in vehicular traffic and renewable energy, where content caching, energy management and traffic steering are jointly investigated to optimize the service capability of SCSs with balanced power demand and supply in different time scales. Case studies are provided to illustrate SCS deployment and operation designs, and some open research issues are also discussed.Comment: IEEE Communications Magazine, to appea

    Dual-battery empowered green cellular networks

    Get PDF
    With awareness of the potential harmful effects to the environment and climate change, on-grid brown energy consumption of information and communications technology (ICT) has drawn much attention. Cellular base stations (BSs) are among the major energy guzzlers in ICT, and their contributions to the global carbon emissions increase sustainedly. It is essential to leverage green energy to power BSs to reduce their on-grid brown energy consumption. However, in order to furthest save on-grid brown energy and decrease the on-grid brown energy electricity expenses, most existing green energy related works only pursue to maximize the green energy utilization while compromising the services received by the mobile users. In reality, dissatisfaction of services may eventually lead to loss of market shares and profits of the network providers. In this research, a dual-battery enabled profit driven user association scheme is introduced to jointly consider the traffic delivery latency and green energy utilization to maximize the profits for the network providers in heterogeneous cellular networks. Since this profit driven user association optimization problem is NP-hard, some heuristics are presented to solve the problem with low computational complexity. Finally, the performance of the proposed algorithm is validated through extensive simulations. In addition, the Internet of Things (IoT) heralds a vision of future Internet where all physical things/devices are connected via a network to promote a heightened level of awareness about our world and dramatically improve our daily lives. Nonetheless, most wireless technologies utilizing unlicensed bands cannot provision ubiquitous and quality IoT services. In contrast, cellular networks support large-scale, quality of service guaranteed, and secured communications. However, tremendous proximal communications via local BSs will lead to severe traffic congestion and huge energy consumption in conventional cellular networks. Device-to-device (D2D) communications can potentially offload traffic from and reduce energy consumption of BSs. In order to realize the vision of a truly global IoT, a novel architecture, i.e., overlay-based green relay assisted D2D communications with dual batteries in heterogeneous cellular networks, is introduced. By optimally allocating the network resource, the introduced resource allocation method provisions the IoT services and minimizes the overall energy consumption of the pico relay BSs. By balancing the residual green energy among the pico relay BSs, the green energy utilization is maximized; this furthest saves the on-grid energy. Finally, the performance of the proposed architecture is validated through extensive simulations. Furthermore, the mobile devices serve the important roles in cellular networks and IoT. With the ongoing worldwide development of IoT, an unprecedented number of edge devices imperatively consume a substantial amount of energy. The overall IoT mobile edge devices have been predicted to be the leading energy guzzler in ICT by 2020. Therefore, a three-step green IoT architecture is proposed, i.e., ambient energy harvesting, green energy wireless transfer and green energy balancing, in this research. The latter step reinforces the former one to ensure the availability of green energy. The basic design principles for these three steps are laid out and discussed. In summary, based on the dual-battery architecture, this dissertation research proposes solutions for the three aspects, i.e., green cellular BSs, green D2D communications and green devices, to hopefully and eventually actualize green cellular access networks, as part of the ongoing efforts in greening our society and environment

    User association strategies in HetNets leading to rate balancing under energy constraints

    Get PDF
    This paper deals with the development of several strategies for associating users to base stations (BSs) in heterogeneous networks. These strategies are able to balance the rate among users and BSs and increase the overall network utility. Constraints related to the energy availability at BSs are considered explicitly in the design, assuming that the BSs are equipped with batteries that are recharged through energy harvesting. We develop a general association strategy, and then we present several suboptimum but less complex solutions suitable for scenarios with high mobility or deployments of BSs with low computational capabilities. We also present an implementation that is to be executed in a distributed way among users and BSs without the need of having a central entity gathering all the information. The performance of the proposed strategies is evaluated through simulations in terms of rate balancing and the effect of the energy harvesting capabilities on the network throughput is shown. We also compare the proposed strategies with the traditional max-SINR user association approach.Peer ReviewedPostprint (published version

    Joint Deployment and Mobility Management of Energy Harvesting Small Cells in Heterogeneous Networks

    Get PDF
    Small heterogeneous cells have been introduced to improve the system capacity and provide the ubiquitous service requirements. In order to make flexible deployment and management of massive small cells, the utilization of self-powered small cell base stations with energy harvesting (EH-SCBSs) is becoming a promising solution due to low-cost expenditure. However, the deployment of static EH-SCBSs entails several intractable challenges in terms of the randomness of renewable energy arrival and dynamics of traffic load with spatio-temporal fluctuation. To tackle these challenges, we develop a tractable framework of the location deployment and mobility management of EH-SCBSs with various traffic load distributions an environmental energy models. In this paper, the joint optimization problem for location deployment and mobile management is investigated for maximizing the total system utility of both users and network operators. Since the formulated problem is a NP-hard problem, we propose a low-complex algorithm that decouples the joint optimization into the location updating approach and the association matching approach. A suboptimal solution for the optimization problem can be guaranteed using the iteration of two stage approaches. Performance evaluation shows that the proposed schemes can efficiently solve the target problems while striking a better overall system utility, compared with other traditional deployment and management strategies
    • …
    corecore