5,241 research outputs found

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    An Online Resource Scheduling for Maximizing Quality-of-Experience in Meta Computing

    Full text link
    Meta Computing is a new computing paradigm, which aims to solve the problem of computing islands in current edge computing paradigms and integrate all the resources on a network by incorporating cloud, edge, and particularly terminal-end devices. It throws light on solving the problem of lacking computing power. However, at this stage, due to technical limitations, it is impossible to integrate the resources of the whole network. Thus, we create a new meta computing architecture composed of multiple meta computers, each of which integrates the resources in a small-scale network. To make meta computing widely applied in society, the service quality and user experience of meta computing cannot be ignored. Consider a meta computing system providing services for users by scheduling meta computers, how to choose from multiple meta computers to achieve maximum Quality-of-Experience (QoE) with limited budgets especially when the true expected QoE of each meta computer is not known as a priori? The existing studies, however, usually ignore the costs and budgets and barely consider the ubiquitous law of diminishing marginal utility. In this paper, we formulate a resource scheduling problem from the perspective of the multi-armed bandit (MAB). To determine a scheduling strategy that can maximize the total QoE utility under a limited budget, we propose an upper confidence bound (UCB) based algorithm and model the utility of service by using a concave function of total QoE to characterize the marginal utility in the real world. We theoretically upper bound the regret of our proposed algorithm with sublinear growth to the budget. Finally, extensive experiments are conducted, and the results indicate the correctness and effectiveness of our algorithm

    Intelligent Reflecting Surface Aided Multi-Tier Hybrid Computing

    Full text link
    The Digital twin edge network (DITEN) aims to integrate mobile edge computing (MEC) and digital twin (DT) to provide real-time system configuration and flexible resource allocation for the sixth-generation network. This paper investigates an intelligent reflecting surface (IRS)-aided multi-tier hybrid computing system that can achieve mutual benefits for DT and MEC in the DITEN. For the first time, this paper presents the opportunity to realize the network-wide convergence of DT and MEC. In the considered system, specifically, over-the-air computation (AirComp) is employed to monitor the status of the DT system, while MEC is performed with the assistance of DT to provide low-latency computing services. Besides, the IRS is utilized to enhance signal transmission and mitigate interference among heterogeneous nodes. We propose a framework for designing the hybrid computing system, aiming to maximize the sum computation rate under communication and computation resources constraints. To tackle the non-convex optimization problem, alternative optimization and successive convex approximation techniques are leveraged to decouple variables and then transform the problem into a more tractable form. Simulation results verify the effectiveness of the proposed algorithm and demonstrate the IRS can significantly improve the system performance with appropriate phase shift configurations. Moreover, the results indicate that the DT assisted MEC system can precisely achieve the balance between local computing and task offloading since real-time system status can be obtained with the help of DT. This paper proposes the network-wide integration of DT and MEC, then demonstrates the necessity of DT for achieving an optimal performance in DITEN systems through analysis and numerical results

    Ab Initio Language Teaching in British Higher Education

    Get PDF
    Drawing extensively on the expertise of teachers of German in universities across the UK, this volume offers an overview of recent trends, new pedagogical approaches and practical guidance for teaching at beginners level in the higher education classroom. At a time when entries for UK school exams in modern foreign languages are decreasing, this book serves the urgent need for research and guidance on ab initio learning and teaching in HE. Using the example of teaching German, it offers theoretical reflections on teaching ab initio and practice-oriented approaches that will be useful for teachers of both German and other languages in higher education. The first chapters assess the role of ab initio provision within the wider context of modern languages departments and language centres. They are followed by sections on teaching methods and innovative approaches in the ab initio classroom that include chapters on the use of music, textbook evaluation, the effective use of a flipped classroom and the contribution of language apps. Finally, the book focuses on the learner in the ab initio context and explores issues around autonomy and learner strengths. The whole builds into a theoretically grounded guide that sketches out perspectives for teaching and learning ab initio languages that will benefit current and future generations of students

    Multidimensional Resource Fragmentation-Aware Virtual Network Embedding in MEC Systems Interconnected by Metro Optical Networks

    Full text link
    The increasing demand for diverse emerging applications has resulted in the interconnection of multi-access edge computing (MEC) systems via metro optical networks. To cater to these diverse applications, network slicing has become a popular tool for creating specialized virtual networks. However, resource fragmentation caused by uneven utilization of multidimensional resources can lead to reduced utilization of limited edge resources. To tackle this issue, this paper focuses on addressing the multidimensional resource fragmentation problem in virtual network embedding (VNE) in MEC systems with the aim of maximizing the profit of an infrastructure provider (InP). The VNE problem in MEC systems is transformed into a bilevel optimization problem, taking into account the interdependence between virtual node embedding (VNoE) and virtual link embedding (VLiE). To solve this problem, we propose a nested bilevel optimization approach named BiVNE. The VNoE is solved using the ant colony system (ACS) in the upper level, while the VLiE is solved using a combination of a shortest path algorithm and an exact-fit spectrum slot allocation method in the lower level. Evaluation results show that the BiVNE algorithm can effectively enhance the profit of the InP by increasing the acceptance ratio and avoiding resource fragmentation simultaneously

    Resource Management in Mobile Edge Computing for Compute-intensive Application

    Full text link
    With current and future mobile applications (e.g., healthcare, connected vehicles, and smart grids) becoming increasingly compute-intensive for many mission-critical use cases, the energy and computing capacities of embedded mobile devices are proving to be insufficient to handle all in-device computation. To address the energy and computing shortages of mobile devices, mobile edge computing (MEC) has emerged as a major distributed computing paradigm. Compared to traditional cloud-based computing, MEC integrates network control, distributed computing, and storage to customizable, fast, reliable, and secure edge services that are closer to the user and data sites. However, the diversity of applications and a variety of user specified requirements (viz., latency, scalability, availability, and reliability) add additional complications to the system and application optimization problems in terms of resource management. In this thesis dissertation, we aim to develop customized and intelligent placement and provisioning strategies that are needed to handle edge resource management problems for different challenging use cases: i) Firstly, we propose an energy-efficient framework to address the resource allocation problem of generic compute-intensive applications, such as Directed Acyclic Graph (DAG) based applications. We design partial task offloading and server selection strategies with the purpose of minimizing the transmission cost. Our experiment and simulation results indicate that partial task offloading provides considerable energy savings, especially for resource-constrained edge systems. ii) Secondly, to address the dynamism edge environments, we propose solutions that integrate Dynamic Spectrum Access (DSA) and Cooperative Spectrum Sensing (CSS) with fine-grained task offloading schemes. Similarly, we show the high efficiency of the proposed strategy in capturing dynamic channel states and enforcing intelligent channel sensing and task offloading decisions. iii) Finally, application-specific long-term optimization frameworks are proposed for two representative applications: a) multi-view 3D reconstruction and b) Deep Neural Network (DNN) inference. Here, in order to eliminate redundant and unnecessary reconstruction processing, we introduce key-frame and resolution selection incorporated with task assignment, quality prediction, and pipeline parallelization. The proposed framework is able to provide a flexible balance between reconstruction time and quality satisfaction. As for DNN inference, a joint resource allocation and DNN partitioning framework is proposed. The outcomes of this research seek to benefit the future distributed computing, smart applications, and data-intensive science communities to build effective, efficient, and robust MEC environments

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    Aerial Network Assistance Systems for Post-Disaster Scenarios : Topology Monitoring and Communication Support in Infrastructure-Independent Networks

    Get PDF
    Communication anytime and anywhere is necessary for our modern society to function. However, the critical network infrastructure quickly fails in the face of a disaster and leaves the affected population without means of communication. This lack can be overcome by smartphone-based emergency communication systems, based on infrastructure-independent networks like Delay-Tolerant Networks (DTNs). DTNs, however, suffer from short device-to-device link distances and, thus, require multi-hop routing or data ferries between disjunct parts of the network. In disaster scenarios, this fragmentation is particularly severe because of the highly clustered human mobility behavior. Nevertheless, aerial communication support systems can connect local network clusters by utilizing Unmanned Aerial Vehicles (UAVs) as data ferries. To facilitate situation-aware and adaptive communication support, knowledge of the network topology, the identification of missing communication links, and the constant reassessment of dynamic disasters are required. These requirements are usually neglected, despite existing approaches to aerial monitoring systems capable of detecting devices and networks. In this dissertation, we, therefore, facilitate the coexistence of aerial topology monitoring and communications support mechanisms in an autonomous Aerial Network Assistance System for infrastructure-independent networks as our first contribution. To enable system adaptations to unknown and dynamic disaster situations, our second contribution addresses the collection, processing, and utilization of topology information. For one thing, we introduce cooperative monitoring approaches to include the DTN in the monitoring process. Furthermore, we apply novel approaches for data aggregation and network cluster estimation to facilitate the continuous assessment of topology information and an appropriate system adaptation. Based on this, we introduce an adaptive topology-aware routing approach to reroute UAVs and increase the coverage of disconnected nodes outside clusters. We generalize our contributions by integrating them into a simulation framework, creating an evaluation platform for autonomous aerial systems as our third contribution. We further increase the expressiveness of our aerial system evaluation, by adding movement models for multicopter aircraft combined with power consumption models based on real-world measurements. Additionally, we improve the disaster simulation by generalizing civilian disaster mobility based on a real-world field test. With a prototypical system implementation, we extensively evaluate our contributions and show the significant benefits of cooperative monitoring and topology-aware routing, respectively. We highlight the importance of continuous and integrated topology monitoring for aerial communications support and demonstrate its necessity for an adaptive and long-term disaster deployment. In conclusion, the contributions of this dissertation enable the usage of autonomous Aerial Network Assistance Systems and their adaptability in dynamic disaster scenarios

    Automatic Question Generation to Support Reading Comprehension of Learners - Content Selection, Neural Question Generation, and Educational Evaluation

    Get PDF
    Simply reading texts passively without actively engaging with their content is suboptimal for text comprehension since learners may miss crucial concepts or misunderstand essential ideas. In contrast, engaging learners actively by asking questions fosters text comprehension. However, educational resources frequently lack questions. Textbooks often contain only a few at the end of a chapter, and informal learning resources such as Wikipedia lack them entirely. Thus, in this thesis, we study to what extent questions about educational science texts can be automatically generated, tackling two research questions. The first question concerns selecting learning-relevant passages to guide the generation process. The second question investigates the generated questions' potential effects and applicability in reading comprehension scenarios. Our first contribution improves the understanding of neural question generation's quality in education. We find that the generators' high linguistic quality transfers to educational texts but that they require guidance by educational content selection. In consequence, we study multiple educational context and answer selection mechanisms. In our second contribution, we propose novel context selection approaches which target question-worthy sentences in texts. In contrast to previous works, our context selectors are guided by educational theory. The proposed methods perform competitive to related work while operating with educationally motivated decision criteria that are easier to understand for educational experts. The third contribution addresses answer selection methods to guide neural question generation with expected answers. Our experiments highlight the need for educational corpora for the task. Models trained on noneducational corpora do not transfer well to the educational domain. Given this discrepancy, we propose a novel corpus construction approach. It automatically derives educational answer selection corpora from textbooks. We verify the approach's usefulness by showing that neural models trained on the constructed corpora learn to detect learning-relevant concepts. In our last contribution, we use the insights from the previous experiments to design, implement, and evaluate an automatic question generator for educational use. We evaluate the proposed generator intrinsically with an expert annotation study and extrinsically with an empirical reading comprehension study. The two evaluation scenarios provide a nuanced view of the generated questions' strengths and weaknesses. Expert annotations attribute an educational value to roughly 60 % of the questions but also reveal various ways in which the questions still fall short of the quality experts desire. Furthermore, the reader-based evaluation indicates that the proposed educational question generator increases learning outcomes compared to a no-question control group. In summary, the results of the thesis improve the understanding of the content selection tasks in educational question generation and provide evidence that it can improve reading comprehension. As such, the proposed approaches are promising tools for authors and learners to promote active reading and thus foster text comprehension
    • …
    corecore