7,720 research outputs found

    Survey on Evaluation Methods for Dialogue Systems

    Get PDF
    In this paper we survey the methods and concepts developed for the evaluation of dialogue systems. Evaluation is a crucial part during the development process. Often, dialogue systems are evaluated by means of human evaluations and questionnaires. However, this tends to be very cost and time intensive. Thus, much work has been put into finding methods, which allow to reduce the involvement of human labour. In this survey, we present the main concepts and methods. For this, we differentiate between the various classes of dialogue systems (task-oriented dialogue systems, conversational dialogue systems, and question-answering dialogue systems). We cover each class by introducing the main technologies developed for the dialogue systems and then by presenting the evaluation methods regarding this class

    Automatic annotation of context and speech acts for dialogue corpora

    Get PDF
    Richly annotated dialogue corpora are essential for new research directions in statistical learning approaches to dialogue management, context-sensitive interpretation, and context-sensitive speech recognition. In particular, large dialogue corpora annotated with contextual information and speech acts are urgently required. We explore how existing dialogue corpora (usually consisting of utterance transcriptions) can be automatically processed to yield new corpora where dialogue context and speech acts are accurately represented. We present a conceptual and computational framework for generating such corpora. As an example, we present and evaluate an automatic annotation system which builds ‘Information State Update' (ISU) representations of dialogue context for the Communicator (2000 and 2001) corpora of human-machine dialogues (2,331 dialogues). The purposes of this annotation are to generate corpora for reinforcement learning of dialogue policies, for building user simulations, for evaluating different dialogue strategies against a baseline, and for training models for context-dependent interpretation and speech recognition. The automatic annotation system parses system and user utterances into speech acts and builds up sequences of dialogue context representations using an ISU dialogue manager. We present the architecture of the automatic annotation system and a detailed example to illustrate how the system components interact to produce the annotations. We also evaluate the annotations, with respect to the task completion metrics of the original corpus and in comparison to hand-annotated data and annotations produced by a baseline automatic system. The automatic annotations perform well and largely outperform the baseline automatic annotations in all measures. The resulting annotated corpus has been used to train high-quality user simulations and to learn successful dialogue strategies. The final corpus will be made publicly availabl

    Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models

    Full text link
    We investigate the task of building open domain, conversational dialogue systems based on large dialogue corpora using generative models. Generative models produce system responses that are autonomously generated word-by-word, opening up the possibility for realistic, flexible interactions. In support of this goal, we extend the recently proposed hierarchical recurrent encoder-decoder neural network to the dialogue domain, and demonstrate that this model is competitive with state-of-the-art neural language models and back-off n-gram models. We investigate the limitations of this and similar approaches, and show how its performance can be improved by bootstrapping the learning from a larger question-answer pair corpus and from pretrained word embeddings.Comment: 8 pages with references; Published in AAAI 2016 (Special Track on Cognitive Systems

    Deep Reinforcement Learning for Dialogue Generation

    Full text link
    Recent neural models of dialogue generation offer great promise for generating responses for conversational agents, but tend to be shortsighted, predicting utterances one at a time while ignoring their influence on future outcomes. Modeling the future direction of a dialogue is crucial to generating coherent, interesting dialogues, a need which led traditional NLP models of dialogue to draw on reinforcement learning. In this paper, we show how to integrate these goals, applying deep reinforcement learning to model future reward in chatbot dialogue. The model simulates dialogues between two virtual agents, using policy gradient methods to reward sequences that display three useful conversational properties: informativity (non-repetitive turns), coherence, and ease of answering (related to forward-looking function). We evaluate our model on diversity, length as well as with human judges, showing that the proposed algorithm generates more interactive responses and manages to foster a more sustained conversation in dialogue simulation. This work marks a first step towards learning a neural conversational model based on the long-term success of dialogues

    Are You Talking to Me? Dialogue Systems Supporting Mixed Teams of Humans and Robots

    Get PDF
    This position paper describes an approach to building spoken dialogue systems for environments containing multiple human speakers and hearers, and multiple robotic speakers and hearers. We address the issue, for robotic hearers, of whether the speech they hear is intended for them, or more likely to be intended for some other hearer. We will describe data collected during a series of experiments involving teams of multiple human and robots (and other software participants), and some preliminary results for distinguishing robot-directed speech from human-directed speech. The domain of these experiments is Mars-analogue planetary exploration. These Mars-analogue field studies involve two subjects in simulated planetary space suits doing geological exploration with the help of 1-2 robots, supporting software agents, a habitat communicator and links to a remote science team. The two subjects are performing a task (geological exploration) which requires them to speak with each other while also speaking with their assistants. The technique used here is to use a probabilistic context-free grammar language model in the speech recognizer that is trained on prior robot-directed speech. Intuitively, the recognizer will give higher confidence to an utterance if it is similar to utterances that have been directed to the robot in the past
    • …
    corecore