3,706 research outputs found

    Niche as a determinant of word fate in online groups

    Get PDF
    Patterns of word use both reflect and influence a myriad of human activities and interactions. Like other entities that are reproduced and evolve, words rise or decline depending upon a complex interplay between {their intrinsic properties and the environments in which they function}. Using Internet discussion communities as model systems, we define the concept of a word niche as the relationship between the word and the characteristic features of the environments in which it is used. We develop a method to quantify two important aspects of the size of the word niche: the range of individuals using the word and the range of topics it is used to discuss. Controlling for word frequency, we show that these aspects of the word niche are strong determinants of changes in word frequency. Previous studies have already indicated that word frequency itself is a correlate of word success at historical time scales. Our analysis of changes in word frequencies over time reveals that the relative sizes of word niches are far more important than word frequencies in the dynamics of the entire vocabulary at shorter time scales, as the language adapts to new concepts and social groupings. We also distinguish endogenous versus exogenous factors as additional contributors to the fates of words, and demonstrate the force of this distinction in the rise of novel words. Our results indicate that short-term nonstationarity in word statistics is strongly driven by individual proclivities, including inclinations to provide novel information and to project a distinctive social identity.Comment: Supporting Information is available here: http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0019009.s00

    ECOMICS: A Web-Based Toolkit for Investigating the Biomolecular Web in Ecosystems Using a Trans-omics Approach

    Get PDF
    Ecosystems can be conceptually thought of as interconnected environmental and metabolic systems, in which small molecules to macro-molecules interact through diverse networks. State-of-the-art technologies in post-genomic science offer ways to inspect and analyze this biomolecular web using omics-based approaches. Exploring useful genes and enzymes, as well as biomass resources responsible for anabolism and catabolism within ecosystems will contribute to a better understanding of environmental functions and their application to biotechnology. Here we present ECOMICS, a suite of web-based tools for ECosystem trans-OMICS investigation that target metagenomic, metatranscriptomic, and meta-metabolomic systems, including biomacromolecular mixtures derived from biomass. ECOMICS is made of four integrated webtools. E-class allows for the sequence-based taxonomic classification of eukaryotic and prokaryotic ribosomal data and the functional classification of selected enzymes. FT2B allows for the digital processing of NMR spectra for downstream metabolic or chemical phenotyping. Bm-Char allows for statistical assignment of specific compounds found in lignocellulose-based biomass, and HetMap is a data matrix generator and correlation calculator that can be applied to trans-omics datasets as analyzed by these and other web tools. This web suite is unique in that it allows for the monitoring of biomass metabolism in a particular environment, i.e., from macromolecular complexes (FT2DB and Bm-Char) to microbial composition and degradation (E-class), and makes possible the understanding of relationships between molecular and microbial elements (HetMap). This website is available to the public domain at: https://database.riken.jp/ecomics/

    liqDB: a small-RNAseq knowledge discovery database for liquid biopsy studies

    Get PDF
    MiRNAs are important regulators of gene expression and are frequently deregulated under pathologic conditions. They are highly stable in bodily fluids which makes them feasible candidates to become minimally invasive biomarkers. In fact, several studies already proposed circulating miRNA-based biomarkers for different types of neoplastic, cardiovascular and degenerative diseases. However, many of these studies rely on small RNA sequencing experiments that are based on different RNA extraction and processing protocols, rendering results incomparable. We generated liqDB, a database for liquid biopsy small RNA sequencing profiles that provides users with meaningful information to guide their small RNA liquid biopsy research and to overcome technical and conceptual problems. By means of a user-friendly web interface, miRNA expression profiles from 1607 manually annotated samples can be queried and explored at different levels. Result pages include downloadable expression matrices, differential expression analysis, most stably expressed miRNAs, cluster analysis and relevant visualizations by means of boxplots and heatmaps. We anticipate that liqDB will be a useful tool in liquid biopsy research as it provides a consistently annotated large compilation of experiments together with tools for reproducible analysis, comparison and hypothesis generation.European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie [grant agreement ELBA, 765492 to M.H. and D.K.L.]; Spanish Government [AGL2017-88702-C2-2-R to M.H.]; Instituto de Salud Carlos III, FEDER funds [PIE16/00045 to J.A.M.]; Chair ‘Doctors Galera-Requena in cancer stem cell research’ (to J.A.M.); Ministry of Education of Spain [FPU13/05662 to R.L. and IFI16/00041 to E.A.]. Funding for open access charge: Instituto de Salud Carlos III (FEDER funds) [PIE16/00045]

    Current Challenges in Modeling Cellular Metabolism

    Get PDF
    Mathematical and computational models play an essential role in understanding the cellular metabolism. They are used as platforms to integrate current knowledge on a biological system and to systematically test and predict the effect of manipulations to such systems. The recent advances in genome sequencing techniques have facilitated the reconstruction of genome-scale metabolic networks for a wide variety of organisms from microbes to human cells. These models have been successfully used in multiple biotechnological applications. Despite these advancements, modeling cellular metabolism still presents many challenges. The aim of this Research Topic is not only to expose and consolidate the state-of-the-art in metabolic modeling approaches, but also to push this frontier beyond the current edge through the introduction of innovative solutions. The articles presented in this e-book address some of the main challenges in the field, including the integration of different modeling formalisms, the integration of heterogeneous data sources into metabolic models, explicit representation of other biological processes during phenotype simulation, and standardization efforts in the representation of metabolic models and simulation results

    The Dynamics of Internet Traffic: Self-Similarity, Self-Organization, and Complex Phenomena

    Full text link
    The Internet is the most complex system ever created in human history. Therefore, its dynamics and traffic unsurprisingly take on a rich variety of complex dynamics, self-organization, and other phenomena that have been researched for years. This paper is a review of the complex dynamics of Internet traffic. Departing from normal treatises, we will take a view from both the network engineering and physics perspectives showing the strengths and weaknesses as well as insights of both. In addition, many less covered phenomena such as traffic oscillations, large-scale effects of worm traffic, and comparisons of the Internet and biological models will be covered.Comment: 63 pages, 7 figures, 7 tables, submitted to Advances in Complex System

    CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcription Factors (TFs) and microRNAs (miRNAs) are key players for gene expression regulation in higher eukaryotes. In the last years, a large amount of bioinformatic studies were devoted to the elucidation of transcriptional and post-transcriptional (mostly miRNA-mediated) regulatory interactions, but little is known about the interplay between them.</p> <p>Description</p> <p>Here we describe a dynamic web-accessible database, <monospace>CircuitsDB</monospace>, supporting a genome-wide transcriptional and post-transcriptional regulatory network integration, for the human and mouse genomes, based on a bioinformatic sequence-analysis approach. In particular, <monospace>CircuitsDB</monospace> is currently focused on the study of mixed miRNA/TF Feed-Forward regulatory Loops (FFLs), i.e. elementary circuits in which a master TF regulates an miRNA and together with it a set of Joint Target protein-coding genes. The database was constructed using an ab-initio oligo analysis procedure for the identification of the transcriptional and post-transcriptional interactions. Several external sources of information were then pooled together to obtain the functional annotation of the proposed interactions. Results for human and mouse genomes are presented in an integrated web tool, that allows users to explore the circuits, investigate their sequence and functional properties and thus suggest possible biological experiments.</p> <p>Conclusions</p> <p>We present <monospace>CircuitsDB</monospace>, a web-server devoted to the study of human and mouse mixed miRNA/TF Feed-Forward regulatory circuits, freely available at: <url>http://biocluster.di.unito.it/circuits/</url></p

    DNA Methylation Profiling from High-Throughput Sequencing Data

    Get PDF
    In this chapter we will review the common steps in the analysis of whole genome singlebase-pair resolution methylation data including the pre-processing of the reads, the alignment and the read out of the methylation information of individual cytosines. We will specially focus on the possible error sources which need to be taken into account in order to generate high quality methylation maps. Several tools have been already developed to convert the sequencing data into knowledge about the methylation levels. We will review the most used tools discussing both technical aspects like user-friendliness and speed, but also biologically relevant questions as the quality control. For one of these tools, NGSmethPipe, we will give a step by step tutorial including installation and methylation profiling for different data types and species. We will conclude the chapter with a brief discussion of NGSmethDB, a database for the storage of single-base resolution methylation maps that can be used to further analyze the obtained methylation maps.This work was supported by the Ministry of Innovation and Science of the Spanish Government [BIO2010-20219 (M.H.), BIO2008-01353 (J.L.O.)]; ‘Juan de la Cierva’ grant (to M.H.) and Basque Country ‘Programa de formación de investigadores’ grant (to G.B.)

    Transcriptome Sequencing for Precise and Accurate Measurement of Transcripts and Accessibility of TCGA for Cancer Datasets and Analysis

    Get PDF
    Next-generation sequencing (NGS) technologies are now well established and have become a routine analysis tool for its depth, coverage, and cost. RNA sequencing (RNA-Seq) has readily replaced the conventional array-based approaches and has become method of choice for qualitative and quantitative analysis of transcriptome, quantification of alternative spliced isoforms, identification of sequence variants, novel transcripts, and gene fusions, among many others. The current chapter discusses the multi-step transcriptome data analysis processes in detail, in the context of re-sequencing (where a reference genome is available). We have discussed the processes including quality control, read alignment, quantification of gene from read level, visualization of data at different levels, and the identification of differentially expressed genes and alternatively spliced transcripts. Considering the data that are freely available to the public, we also discuss The Cancer Genome Atlas (TCGA), as a resource of RNA-Seq data on cancer for selection and analysis in specific contexts of experimentation. This chapter provides insights into the applicability, data availability, tools, and statistics for a beginner to get familiar with RNA-Seq data analysis and TCGA

    Anvi’o: An advanced analysis and visualization platform for ‘omics data

    Get PDF
    corecore