269 research outputs found

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Image-based Decision Support Systems: Technical Concepts, Design Knowledge, and Applications for Sustainability

    Get PDF
    Unstructured data accounts for 80-90% of all data generated, with image data contributing its largest portion. In recent years, the field of computer vision, fueled by deep learning techniques, has made significant advances in exploiting this data to generate value. However, often computer vision models are not sufficient for value creation. In these cases, image-based decision support systems (IB-DSSs), i.e., decision support systems that rely on images and computer vision, can be used to create value by combining human and artificial intelligence. Despite its potential, there is only little work on IB-DSSs so far. In this thesis, we develop technical foundations and design knowledge for IBDSSs and demonstrate the possible positive effect of IB-DSSs on environmental sustainability. The theoretical contributions of this work are based on and evaluated in a series of artifacts in practical use cases: First, we use technical experiments to demonstrate the feasibility of innovative approaches to exploit images for IBDSSs. We show the feasibility of deep-learning-based computer vision and identify future research opportunities based on one of our practical use cases. Building on this, we develop and evaluate a novel approach for combining human and artificial intelligence for value creation from image data. Second, we develop design knowledge that can serve as a blueprint for future IB-DSSs. We perform two design science research studies to formulate generalizable principles for purposeful design — one for IB-DSSs and one for the subclass of image-mining-based decision support systems (IM-DSSs). While IB-DSSs can provide decision support based on single images, IM-DSSs are suitable when large amounts of image data are available and required for decision-making. Third, we demonstrate the viability of applying IBDSSs to enhance environmental sustainability by performing life cycle assessments for two practical use cases — one in which the IB-DSS enables a prolonged product lifetime and one in which the IB-DSS facilitates an improvement of manufacturing processes. We hope this thesis will contribute to expand the use and effectiveness of imagebased decision support systems in practice and will provide directions for future research

    Digital Traces of the Mind::Using Smartphones to Capture Signals of Well-Being in Individuals

    Get PDF
    General context and questions Adolescents and young adults typically use their smartphone several hours a day. Although there are concerns about how such behaviour might affect their well-being, the popularity of these powerful devices also opens novel opportunities for monitoring well-being in daily life. If successful, monitoring well-being in daily life provides novel opportunities to develop future interventions that provide personalized support to individuals at the moment they require it (just-in-time adaptive interventions). Taking an interdisciplinary approach with insights from communication, computational, and psychological science, this dissertation investigated the relation between smartphone app use and well-being and developed machine learning models to estimate an individual’s well-being based on how they interact with their smartphone. To elucidate the relation between smartphone trace data and well-being and to contribute to the development of technologies for monitoring well-being in future clinical practice, this dissertation addressed two overarching questions:RQ1: Can we find empirical support for theoretically motivated relations between smartphone trace data and well-being in individuals? RQ2: Can we use smartphone trace data to monitor well-being in individuals?Aims The first aim of this dissertation was to quantify the relation between the collected smartphone trace data and momentary well-being at the sample level, but also for each individual, following recent conceptual insights and empirical findings in psychological, communication, and computational science. A strength of this personalized (or idiographic) approach is that it allows us to capture how individuals might differ in how smartphone app use is related to their well-being. Considering such interindividual differences is important to determine if some individuals might potentially benefit from spending more time on their smartphone apps whereas others do not or even experience adverse effects. The second aim of this dissertation was to develop models for monitoring well-being in daily life. The present work pursued this transdisciplinary aim by taking a machine learning approach and evaluating to what extent we might estimate an individual’s well-being based on their smartphone trace data. If such traces can be used for this purpose by helping to pinpoint when individuals are unwell, they might be a useful data source for developing future interventions that provide personalized support to individuals at the moment they require it (just-in-time adaptive interventions). With this aim, the dissertation follows current developments in psychoinformatics and psychiatry, where much research resources are invested in using smartphone traces and similar data (obtained with smartphone sensors and wearables) to develop technologies for detecting whether an individual is currently unwell or will be in the future. Data collection and analysis This work combined novel data collection techniques (digital phenotyping and experience sampling methodology) for measuring smartphone use and well-being in the daily lives of 247 student participants. For a period up to four months, a dedicated application installed on participants’ smartphones collected smartphone trace data. In the same time period, participants completed a brief smartphone-based well-being survey five times a day (for 30 days in the first month and 30 days in the fourth month; up to 300 assessments in total). At each measurement, this survey comprised questions about the participants’ momentary level of procrastination, stress, and fatigue, while sleep duration was measured in the morning. Taking a time-series and machine learning approach to analysing these data, I provide the following contributions: Chapter 2 investigates the person-specific relation between passively logged usage of different application types and momentary subjective procrastination, Chapter 3 develops machine learning methodology to estimate sleep duration using smartphone trace data, Chapter 4 combines machine learning and explainable artificial intelligence to discover smartphone-tracked digital markers of momentary subjective stress, Chapter 5 uses a personalized machine learning approach to evaluate if smartphone trace data contains behavioral signs of fatigue. Collectively, these empirical studies provide preliminary answers to the overarching questions of this dissertation.Summary of results With respect to the theoretically motivated relations between smartphone trace data and wellbeing (RQ1), we found that different patterns in smartphone trace data, from time spent on social network, messenger, video, and game applications to smartphone-tracked sleep proxies, are related to well-being in individuals. The strength and nature of this relation depends on the individual and app usage pattern under consideration. The relation between smartphone app use patterns and well-being is limited in most individuals, but relatively strong in a minority. Whereas some individuals might benefit from using specific app types, others might experience decreases in well-being when spending more time on these apps. With respect to the question whether we might use smartphone trace data to monitor well-being in individuals (RQ2), we found that smartphone trace data might be useful for this purpose in some individuals and to some extent. They appear most relevant in the context of sleep monitoring (Chapter 3) and have the potential to be included as one of several data sources for monitoring momentary procrastination (Chapter 2), stress (Chapter 4), and fatigue (Chapter 5) in daily life. Outlook Future interdisciplinary research is needed to investigate whether the relationship between smartphone use and well-being depends on the nature of the activities performed on these devices, the content they present, and the context in which they are used. Answering these questions is essential to unravel the complex puzzle of developing technologies for monitoring well-being in daily life.<br/

    Metaverse. Old urban issues in new virtual cities

    Get PDF
    Recent years have seen the arise of some early attempts to build virtual cities, utopias or affective dystopias in an embodied Internet, which in some respects appear to be the ultimate expression of the neoliberal city paradigma (even if virtual). Although there is an extensive disciplinary literature on the relationship between planning and virtual or augmented reality linked mainly to the gaming industry, this often avoids design and value issues. The observation of some of these early experiences - Decentraland, Minecraft, Liberland Metaverse, to name a few - poses important questions and problems that are gradually becoming inescapable for designers and urban planners, and allows us to make some partial considerations on the risks and potentialities of these early virtual cities

    Continuous Rationale Management

    Get PDF
    Continuous Software Engineering (CSE) is a software life cycle model open to frequent changes in requirements or technology. During CSE, software developers continuously make decisions on the requirements and design of the software or the development process. They establish essential decision knowledge, which they need to document and share so that it supports the evolution and changes of the software. The management of decision knowledge is called rationale management. Rationale management provides an opportunity to support the change process during CSE. However, rationale management is not well integrated into CSE. The overall goal of this dissertation is to provide workflows and tool support for continuous rationale management. The dissertation contributes an interview study with practitioners from the industry, which investigates rationale management problems, current practices, and features to support continuous rationale management beneficial for practitioners. Problems of rationale management in practice are threefold: First, documenting decision knowledge is intrusive in the development process and an additional effort. Second, the high amount of distributed decision knowledge documentation is difficult to access and use. Third, the documented knowledge can be of low quality, e.g., outdated, which impedes its use. The dissertation contributes a systematic mapping study on recommendation and classification approaches to treat the rationale management problems. The major contribution of this dissertation is a validated approach for continuous rationale management consisting of the ConRat life cycle model extension and the comprehensive ConDec tool support. To reduce intrusiveness and additional effort, ConRat integrates rationale management activities into existing workflows, such as requirements elicitation, development, and meetings. ConDec integrates into standard development tools instead of providing a separate tool. ConDec enables lightweight capturing and use of decision knowledge from various artifacts and reduces the developers' effort through automatic text classification, recommendation, and nudging mechanisms for rationale management. To enable access and use of distributed decision knowledge documentation, ConRat defines a knowledge model of decision knowledge and other artifacts. ConDec instantiates the model as a knowledge graph and offers interactive knowledge views with useful tailoring, e.g., transitive linking. To operationalize high quality, ConRat introduces the rationale backlog, the definition of done for knowledge documentation, and metrics for intra-rationale completeness and decision coverage of requirements and code. ConDec implements these agile concepts for rationale management and a knowledge dashboard. ConDec also supports consistent changes through change impact analysis. The dissertation shows the feasibility, effectiveness, and user acceptance of ConRat and ConDec in six case study projects in an industrial setting. Besides, it comprehensively analyses the rationale documentation created in the projects. The validation indicates that ConRat and ConDec benefit CSE projects. Based on the dissertation, continuous rationale management should become a standard part of CSE, like automated testing or continuous integration

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    Comparative process mining:analyzing variability in process data

    Get PDF

    Digital writing technologies in higher education : theory, research, and practice

    Get PDF
    This open access book serves as a comprehensive guide to digital writing technology, featuring contributions from over 20 renowned researchers from various disciplines around the world. The book is designed to provide a state-of-the-art synthesis of the developments in digital writing in higher education, making it an essential resource for anyone interested in this rapidly evolving field. In the first part of the book, the authors offer an overview of the impact that digitalization has had on writing, covering more than 25 key technological innovations and their implications for writing practices and pedagogical uses. Drawing on these chapters, the second part of the book explores the theoretical underpinnings of digital writing technology such as writing and learning, writing quality, formulation support, writing and thinking, and writing processes. The authors provide insightful analysis on the impact of these developments and offer valuable insights into the future of writing. Overall, this book provides a cohesive and consistent theoretical view of the new realities of digital writing, complementing existing literature on the digitalization of writing. It is an essential resource for scholars, educators, and practitioners interested in the intersection of technology and writing

    Comparative process mining:analyzing variability in process data

    Get PDF

    Cyber Threat Intelligence based Holistic Risk Quantification and Management

    Get PDF
    • …
    corecore