3,969 research outputs found

    Power and Energy Visualisation in the Home

    Get PDF
    This thesis explores ways of improving the ability for households to manage their consumption of electricity, in the context of increasing concerns regarding global warming, and ever-growing demands for electricity. The thesis first explores the understanding of power and energy concepts and relationships, to establish whether poor understanding of these concepts affects people’s ability to be aware of and manage their consumption. It then, given that being informed is an important contributor to awareness, proceeds to explore the effectiveness of two different styles of energy visualisation in the home: numerical detail, and a more abstract representation. The results demonstrated that participants had a limited understanding of the relationship between the power and energy. The statistical relationship between participants’ understanding and their ability to manage energy consumption in their home was a positive weak correlation. Participants believed that the abstract representation was more useful and clear than the numerical representation in visualizing home energy consumption in both studies. In representing power consumption in home, using an abstract meter was better than using a digital visualization meter because of the clarity of representation and attractive display

    Interacting with Smart Environments: Users, Interfaces, and Devices

    Get PDF
    A Smart Environment is an environment enriched with disappearing devices, acting together to form an “intelligent entity”. In such environments, the computing power pervades the space where the user lives, so it becomes particularly important to investigate the user’s perspective in interacting with her surrounding. Interaction, in fact, occurs when a human performs some kind of activity using any computing technology: in this case, the computing technology has an intelligence of its own and can potentially be everywhere. There is no well-defined interaction situation or context, and interaction can happen casually or accidentally. The objective of this dissertation is to improve the interaction between such complex and different entities: the human and the Smart Environment. To reach this goal, this thesis presents four different and innovative approaches to address some of the identified key challenges. Such approaches, then, are validated with four corresponding software solutions, integrated with a Smart Environment, that I have developed and tested with end-users. Taken together, the proposed solutions enable a better interaction between diverse users and their intelligent environments, provide a solid set of requirements, and can serve as a baseline for further investigation on this emerging topic

    OSEM : occupant-specific energy monitoring.

    Get PDF
    Electricity has become prevalent in modern day lives. Almost all the comforts people enjoy today, like home heating and cooling, indoor and outdoor lighting, computers, home and office appliances, depend on electricity. Moreover, the demand for electricity is increasing across the globe. The increasing demand for electricity and the increased awareness about carbon footprints have raised interest in the implementation of energy efficiency measures. A feasible remedy to conserve energy is to provide energy consumption feedback. This approach has suggested the possibility of considerable reduction in the energy consumption, which is in the range of 3.8% to 12%. Currently, research is on-going to monitor energy consumption of individual appliances. However, various approaches studied so far are limited to group-level feedback. The limitation of this approach is that the occupant of a house/building is unaware of his/her energy consumption pattern and has no information regarding how his/her energy-related behavior is affecting the overall energy consumption of a house/building. Energy consumption of a house/building largely depends on the energy-related behavior of individual occupants. Therefore, research in the area of individualized energy-usage feedback is essential. The OSEM (Occupant-Specific Energy Monitoring) system presented in this work is capable of monitoring individualized energy usage. OSEM system uses the electromagnetic field (EMF) radiated by appliances as a signature for appliance identification. An EMF sensor was designed and fabricated to collect the EMF radiated by appliances. OSEM uses proximity sensing to confirm the energy-related activity. Once confirmed, this activity is attributed to the occupant who initiated it. Bluetooth Low Energy technology was used for proximity sensing. This OSEM system would provide a detailed energy consumption report of individual occupants, which would help the occupants understand their energy consumption patterns and in turn encourage them to undertake energy conservation measures

    FSEA 2014 – Proceedings of the AVI 2014 Workshop on Fostering Smart Energy Applications through Advanced Visual Interfaces

    Get PDF
    It is with great pleasure that we welcome you to FSEA 2014, the AVI 2014 workshop on Fostering Smart Energy Applications through Advanced Visual Interfaces. This workshop focuses on advanced interaction, interface, and visualization techniques for energy-related applications, tools, and services. It brings together researchers and practitioners from a diverse range of background, including interaction design, human-computer interaction, visualization, computer games, and other fields concerned with the development of advanced visual interfaces for smart energy applications. FSEA 2014 is the result of the efforts of many people involved in its organization, including our programme committee, and others who have assisted us in putting this workshop together

    Data fusion strategies for energy efficiency in buildings: Overview, challenges and novel orientations

    Full text link
    Recently, tremendous interest has been devoted to develop data fusion strategies for energy efficiency in buildings, where various kinds of information can be processed. However, applying the appropriate data fusion strategy to design an efficient energy efficiency system is not straightforward; it requires a priori knowledge of existing fusion strategies, their applications and their properties. To this regard, seeking to provide the energy research community with a better understanding of data fusion strategies in building energy saving systems, their principles, advantages, and potential applications, this paper proposes an extensive survey of existing data fusion mechanisms deployed to reduce excessive consumption and promote sustainability. We investigate their conceptualizations, advantages, challenges and drawbacks, as well as performing a taxonomy of existing data fusion strategies and other contributing factors. Following, a comprehensive comparison of the state-of-the-art data fusion based energy efficiency frameworks is conducted using various parameters, including data fusion level, data fusion techniques, behavioral change influencer, behavioral change incentive, recorded data, platform architecture, IoT technology and application scenario. Moreover, a novel method for electrical appliance identification is proposed based on the fusion of 2D local texture descriptors, where 1D power signals are transformed into 2D space and treated as images. The empirical evaluation, conducted on three real datasets, shows promising performance, in which up to 99.68% accuracy and 99.52% F1 score have been attained. In addition, various open research challenges and future orientations to improve data fusion based energy efficiency ecosystems are explored

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    Energy Forensics Analysis

    Get PDF
    The energy consumed by a building can reveal information about the occupants and their activities inside the building. This could be utilized by industries and law enforcement agencies for commercial or legal purposes. Utility data from Smart Meter (SM) readings can reveal detailed information that could be mapped to foretell resident occupancy and type of appliance usage over desired time intervals. However, obtaining SM data in the United States is laborious and subjected to legal and procedural constraints. This research develops a user-driven simulation tool with realistic data options and assumptions of potential human behavior to determine energy usage patterns over time without any utility data. In this work, factors such as occupant number, the possibility of place being occupied, thermostat settings, building envelope, appliances used in households, appliance capacities, and the possibility of using each appliance, weather, and heating-cooling systems specifications are considered. For five specific benchmarked scenarios, the range of the random numbers is specified based on assumed potential human behavior for occupancy and energy-consuming appliances usage possibility, with respect to the time of the day, weekday, and weekends. The simulation is developed using the Visual Basic Application (VBA)® in Microsoft Excel®, based on the discrete-event Monte Carlo Simulation (MCS). This simulation generates energy usage patterns and electricity and natural gas costs over 30-minutes intervals for one year. The simulated energy usage and the cost are reflected in the sensitivity analysis by comparing factors such as occupancy, appliance type, and time of the week. This work is intended to facilitate the analysis of building occupants\u27 activities by various stakeholders, subject to all legal provisions that apply. It is not intended for the general public to pursue these activities because legal ramifications might be involved
    corecore