430 research outputs found

    An experimental characterization of reservoir computing in ambient assisted living applications

    Get PDF
    In this paper, we present an introduction and critical experimental evaluation of a reservoir computing (RC) approach for ambient assisted living (AAL) applications. Such an empirical analysis jointly addresses the issues of efficiency, by analyzing different system configurations toward the embedding into computationally constrained wireless sensor devices, and of efficacy, by analyzing the predictive performance on real-world applications. First, the approach is assessed on a validation scheme where training, validation and test data are sampled in homogeneous ambient conditions, i.e., from the same set of rooms. Then, it is introduced an external test set involving a new setting, i.e., a novel ambient, which was not available in the first phase of model training and validation. The specific test-bed considered in the paper allows us to investigate the capability of the RC approach to discriminate among user movement trajectories from received signal strength indicator sensor signals. This capability can be exploited in various AAL applications targeted at learning user indoor habits, such as in the proposed indoor movement forecasting task. Such a joint analysis of the efficiency/efficacy trade-off provides novel insight in the concrete successful exploitation of RC for AAL tasks and for their distributed implementation into wireless sensor networks

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Forecast-Driven Enhancement of Received Signal Strength (RSS)-Based Localization Systems

    Get PDF
    Real-time user localization in indoor environments is an important issue in ambient assisted living (AAL). In this context, localization based on received signal strength (RSS) has received considerable interest in the recent literature, due to its low cost and energy consumption and to its availability on all wireless communication hardware. On the other hand, the RSS-based localization is characterized by a greater error with respect to other technologies. Restricting the problem to localization of AAL users in indoor environments, we demonstrate that forecasting with a little user movement advance (for example, when the user is about to leave a room) provides significant benefits to the accuracy of RSS-based localization systems. Specifically, we exploit echo state networks (ESNs) fed with RSS measurements and trained to recognize patterns of user’s movements to feed back to the RSS-based localization syste

    Human activity recognition using multisensor data fusion based on Reservoir Computing

    Get PDF
    Activity recognition plays a key role in providing activity assistance and care for users in smart homes. In this work, we present an activity recognition system that classifies in the near real-time a set of common daily activities exploiting both the data sampled by sensors embedded in a smartphone carried out by the user and the reciprocal Received Signal Strength (RSS) values coming from worn wireless sensor devices and from sensors deployed in the environment. In order to achieve an effective and responsive classification, a decision tree based on multisensor data-stream is applied fusing data coming from embedded sensors on the smartphone and environmental sensors before processing the RSS stream. To this end, we model the RSS stream, obtained from a Wireless Sensor Network (WSN), using Recurrent Neural Networks (RNNs) implemented as efficient Echo State Networks (ESNs), within the Reservoir Computing (RC) paradigm. We targeted the system for the EvAAL scenario, an international competition that aims at establishing benchmarks and evaluation metrics for comparing Ambient Assisted Living (AAL) solutions. In this paper, the performance of the proposed activity recognition system is assessed on a purposely collected real-world dataset, taking also into account a competitive neural network approach for performance comparison. Our results show that, with an appropriate configuration of the information fusion chain, the proposed system reaches a very good accuracy with a low deployment cost

    Prediction of the Italian electricity price for smart grid applications

    Get PDF
    In this paper we address the problem of one day-ahead hourly electricity price forecast for smart grid applications. To this aim, we investigate the application of a number of predictive models for time-series, including methods based on empirical strategies frequently adopted in the smart grid community, Kalman Filters and Echo State Networks (ESNs). The considered methods have been suitably modified to address the electricity price forecast problem. Strategies based on daily re-adaptation of models’ parameters are taken into consideration as well. The predictive performance achieved by the considered models is assessed, and the methods are compared among each other on recent real data from the Italian electricity market. As a result of the comparison over three years data, ESN methods appear to provide the most accurate price predictions, which could imply significant economic savings in many smart grid activities, such as switching on power plants to support power generation from renewable sources, electric vehicle recharging or usage of household appliances

    Land use, urban, environmental, and cartographic applications, chapter 2, part D

    Get PDF
    Microwave data and its use in effective state, regional, and national land use planning are dealt with. Special attention was given to monitoring land use change, especially dynamic components, and the interaction between land use and dynamic features of the environment. Disaster and environmental monitoring are also discussed

    Reservoir Computing for Learning in Structured Domains

    Get PDF
    The study of learning models for direct processing complex data structures has gained an increasing interest within the Machine Learning (ML) community during the last decades. In this concern, efficiency, effectiveness and adaptivity of the ML models on large classes of data structures represent challenging and open research issues. The paradigm under consideration is Reservoir Computing (RC), a novel and extremely efficient methodology for modeling Recurrent Neural Networks (RNN) for adaptive sequence processing. RC comprises a number of different neural models, among which the Echo State Network (ESN) probably represents the most popular, used and studied one. Another research area of interest is represented by Recursive Neural Networks (RecNNs), constituting a class of neural network models recently proposed for dealing with hierarchical data structures directly. In this thesis the RC paradigm is investigated and suitably generalized in order to approach the problems arising from learning in structured domains. The research studies described in this thesis cover classes of data structures characterized by increasing complexity, from sequences, to trees and graphs structures. Accordingly, the research focus goes progressively from the analysis of standard ESNs for sequence processing, to the development of new models for trees and graphs structured domains. The analysis of ESNs for sequence processing addresses the interesting problem of identifying and characterizing the relevant factors which influence the reservoir dynamics and the ESN performance. Promising applications of ESNs in the emerging field of Ambient Assisted Living are also presented and discussed. Moving towards highly structured data representations, the ESN model is extended to deal with complex structures directly, resulting in the proposed TreeESN, which is suitable for domains comprising hierarchical structures, and Graph-ESN, which generalizes the approach to a large class of cyclic/acyclic directed/undirected labeled graphs. TreeESNs and GraphESNs represent both novel RC models for structured data and extremely efficient approaches for modeling RecNNs, eventually contributing to the definition of an RC framework for learning in structured domains. The problem of adaptively exploiting the state space in GraphESNs is also investigated, with specific regard to tasks in which input graphs are required to be mapped into flat vectorial outputs, resulting in the GraphESN-wnn and GraphESN-NG models. As a further point, the generalization performance of the proposed models is evaluated considering both artificial and complex real-world tasks from different application domains, including Chemistry, Toxicology and Document Processing

    Research and technology 81

    Get PDF
    During fiscal year 1981, the Goddard Space Flight Center continued to contribute to the goals and objectives of the Nation's space program by undertaking a wide variety of basic and applied research, technology developments, data analyses, applications investigations and flight projects. The highlights of these research and technology efforts are described

    Earth resources: A continuing bibliography with indexes, issue 3

    Get PDF
    This bibliography lists 472 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1974 and September 1974. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory, natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing, and distribution systems, instrumentation and sensors, and economic analysis

    Space-Based Remote Sensing of the Earth: A Report to the Congress

    Get PDF
    The commercialization of the LANDSAT Satellites, remote sensing research and development as applied to the Earth and its atmosphere as studied by NASA and NOAA is presented. Major gaps in the knowledge of the Earth and its atmosphere are identified and a series of space based measurement objectives are derived. The near-term space observations programs of the United States and other countries are detailed. The start is presented of the planning process to develop an integrated national program for research and development in Earth remote sensing for the remainder of this century and the many existing and proposed satellite and sensor systems that the program may include are described
    corecore