200,825 research outputs found

    Mining HCI Data for Theory of Mind Induction

    Get PDF
    Human-computer interaction (HCI) results in enormous amounts of data-bearing potentials for understanding a human user’s intentions, goals, and desires. Knowing what users want and need is a key to intelligent system assistance. The theory of mind concept known from studies in animal behavior is adopted and adapted for expressive user modeling. Theories of mind are hypothetical user models representing, to some extent, a human user’s thoughts. A theory of mind may even reveal tacit knowledge. In this way, user modeling becomes knowledge discovery going beyond the human’s knowledge and covering domain-specific insights. Theories of mind are induced by mining HCI data. Data mining turns out to be inductive modeling. Intelligent assistant systems inductively modeling a human user’s intentions, goals, and the like, as well as domain knowledge are, by nature, learning systems. To cope with the risk of getting it wrong, learning systems are equipped with the skill of reflection

    Using SCXML to integrate semantic sensor information into context-aware user interfaces

    Get PDF
    This paper describes a novel architecture to introduce automatic annotation and processing of semantic sensor data within context-aware applications. Based on the well-known state-charts technologies, and represented using W3C SCXML language combined with Semantic Web technologies, our architecture is able to provide enriched higher-level semantic representations of user’s context. This capability to detect and model relevant user situations allows a seamless modeling of the actual interaction situation, which can be integrated during the design of multimodal user interfaces (also based on SCXML) for them to be adequately adapted. Therefore, the final result of this contribution can be described as a flexible context-aware SCXML-based architecture, suitable for both designing a wide range of multimodal context-aware user interfaces, and implementing the automatic enrichment of sensor data, making it available to the entire Semantic Sensor We

    A Neural Network Approach to Intention Modeling forUser-Adapted Conversational Agents

    Get PDF
    Spoken dialogue systems have been proposed to enable a more natural and intuitive interaction with the environment andhuman-computer interfaces. In this contribution, we present a framework based on neural networks that allows modeling of theuser’s intention during the dialogue and uses this prediction todynamically adapt the dialoguemodel of the system taking intoconsideration the user’s needs and preferences. We have evaluated our proposal to develop a user-adapted spoken dialogue systemthat facilitates tourist information and services and provide a detailed discussion of the positive influence of our proposal in thesuccess of the interaction, the information and services provided, and the quality perceived by the users

    Developing enhanced conversational agents for social virtual worlds

    Get PDF
    In This Paper, We Present A Methodology For The Development Of Embodied Conversational Agents For Social Virtual Worlds. The Agents Provide Multimodal Communication With Their Users In Which Speech Interaction Is Included. Our Proposal Combines Different Techniques Related To Artificial Intelligence, Natural Language Processing, Affective Computing, And User Modeling. A Statistical Methodology Has Been Developed To Model The System Conversational Behavior, Which Is Learned From An Initial Corpus And Improved With The Knowledge Acquired From The Successive Interactions. In Addition, The Selection Of The Next System Response Is Adapted Considering Information Stored Into User&#39 S Profiles And Also The Emotional Contents Detected In The User&#39 S Utterances. Our Proposal Has Been Evaluated With The Successful Development Of An Embodied Conversational Agent Which Has Been Placed In The Second Life Social Virtual World. The Avatar Includes The Different Models And Interacts With The Users Who Inhabit The Virtual World In Order To Provide Academic Information. The Experimental Results Show That The Agent&#39 S Conversational Behavior Adapts Successfully To The Specific Characteristics Of Users Interacting In Such Environments.Work partially supported by the Spanish CICyT Projects under grant TRA2015-63708-R and TRA2016-78886-C3-1-R

    Adapting modeling environments to domain specific interactions

    Full text link
    Software tools are being used by experts in a variety of domains. There are numerous software modeling environments tailored to a specific domain expertise. However, there is no consistent approach to generically synthesize a product line of such modeling environments that also take into account the user interaction and experience adapted to the domain. The focus of my thesis is the proposal of a solution to explicitly model user interfaces and interaction of modeling environments so that they can be tailored to the habits and preferences of domain experts. We extend current model-driven engineering techniques that synthesize graphical modeling environments to also take interaction models into account. The formal semantics of our language framework is based on statecharts. We define a development process for generating such modeling environments to maximize reuse through a novel statechart refinement technique.Les outils logiciels sont utilisés par des experts dans une variété de domaines. Il existe de nombreux environnements de modélisation logicielle adaptés á une expertise spécifique. Cependant, il n’existe pas d’approche cohérente pour synthétiser génériquement une ligne de produits de tels environnements de modélisation qui prennent également en compte l’interaction et l’expérience utilisateur adaptées au domaine. L’objectif de ma thése est la proposition d’une solution pour modéliser explicitement les interfaces utilisateur et l’interaction des environnements de modélisation afin qu’ils puissent étre adaptés aux habitudes et aux préférences des experts du domaine. Nous étendons les techniques d’ingénierie actuelles pilotées par un modéle qui synthétisent des environnements de modélisation graphique pour prendre également en compte les modèles d’interaction. La sémantique formelle de notre cadre linguistique est basée sur des statecharts. Nous définissons un processus de développement pour générer de tels environnements de modélisation afin de maximiser la réutilisation à travers une nouveau technique de raffinement de statecharts

    A component-based collaboration infrastructure

    Get PDF
    Groupware applications allow geographically distributed users to collaborate on shared tasks. However, it is widely recognized that groupware applications are expensive to build due to coordination services and group dynamics, neither of which is present in single-user applications. Previous collaboration transparency systems reuse existing single-user applications as a whole for collaborative work, often at the price of inflexible coordination. Previous collaboration awareness systems, on the other hand, provide reusable coordination services and multi-user widgets, but often with two weaknesses: (1) the multi-user widgets provided are special-purpose and limited in number, while no guidelines are provided for developing multi-user interface components in general; and (2) they often fail to reach the desired level of flexibility in coordination by tightly binding shared data and coordination services. In this dissertation, we propose a component-based approach to developing group- ware applications that addresses the above two problems. To address the first prob- lem, we propose a shared component model for modeling data and graphic user inter- face(GUI) components of groupware applications. As a result, the myriad of existing single-user components can be re-purposed as shared GUI or data components. An adaptation tool is developed to assist the adaptation process. To address the second problem, we propose a coordination service framework which systematically model the interaction between user, data, and coordination protocols. Due to the clean separation of data and control and the capability to dynamically "glue" them together, the framework provides reusable services such as data distribution, persistence, and adaptable consistency control. The association between data and coordination services can be dynamically changed at runtime. An Evolvable and eXtensible Environment for Collaboration (EXEC) is built to evaluate the proposed approach. In our experiments, we demonstrate two benefits of our approach: (1) a group of common groupware features adapted from existing single- user components are plugged in to extend the functionalities of the environment itself; and (2)coordination services can be dynamically attached to and detached from these shared components at different granules to support evolving collaboration needs

    Layered evaluation of interactive adaptive systems : framework and formative methods

    Get PDF
    Peer reviewedPostprin

    Personalization in cultural heritage: the road travelled and the one ahead

    Get PDF
    Over the last 20 years, cultural heritage has been a favored domain for personalization research. For years, researchers have experimented with the cutting edge technology of the day; now, with the convergence of internet and wireless technology, and the increasing adoption of the Web as a platform for the publication of information, the visitor is able to exploit cultural heritage material before, during and after the visit, having different goals and requirements in each phase. However, cultural heritage sites have a huge amount of information to present, which must be filtered and personalized in order to enable the individual user to easily access it. Personalization of cultural heritage information requires a system that is able to model the user (e.g., interest, knowledge and other personal characteristics), as well as contextual aspects, select the most appropriate content, and deliver it in the most suitable way. It should be noted that achieving this result is extremely challenging in the case of first-time users, such as tourists who visit a cultural heritage site for the first time (and maybe the only time in their life). In addition, as tourism is a social activity, adapting to the individual is not enough because groups and communities have to be modeled and supported as well, taking into account their mutual interests, previous mutual experience, and requirements. How to model and represent the user(s) and the context of the visit and how to reason with regard to the information that is available are the challenges faced by researchers in personalization of cultural heritage. Notwithstanding the effort invested so far, a definite solution is far from being reached, mainly because new technology and new aspects of personalization are constantly being introduced. This article surveys the research in this area. Starting from the earlier systems, which presented cultural heritage information in kiosks, it summarizes the evolution of personalization techniques in museum web sites, virtual collections and mobile guides, until recent extension of cultural heritage toward the semantic and social web. The paper concludes with current challenges and points out areas where future research is needed

    A Probabilistic Approach to Modeling Socio-Behavioral Interactions

    Get PDF
    In our ever-increasingly connected world, it is essential to build computational models that represent, reason, and model the underlying characteristics of real-world networks. Data generated from these networks are often heterogeneous, interlinked, and exhibit rich multi-relational graph structures having unobserved latent characteristics. My work focuses on building computational models for representing and reasoning about rich, heterogeneous, interlinked graph data. In my research, I model socio-behavioral interactions and predict user behavior patterns in two important online interaction platforms: online courses and online professional networks. Structured data from these interaction platforms contain rich behavioral and interaction data, and provide an opportunity to design machine learning methods for understanding and interpreting user behavior. The data also contains unstructured data, such as natural language text from forum posts and other online discussions. My research aims at constructing a family of probabilistic models for modeling social interactions involving both structured and unstructured data. In the early part of this thesis, I present a family of probabilistic models for online courses for: 1) modeling student engagement, 2) predicting student completion and dropouts, 3) modeling student sentiment toward various course aspects (e.g., content vs. logistics), 4) detecting coarse and fine-grained course aspects (e.g., grading, video, content), and 5) modeling evolution of topics in repeated offerings of online courses. These methods have the potential to improve student experience and focus limited instructor resources in ways that will have the most impact. In the latter part of this thesis, I present methods to model multi-relational influence in online professional networks. I test the effectiveness of this model via experimentation on the professional network, LinkedIn. My models can potentially be adapted to address a wide range of problems in real-world networks including predicting user interests, user retention, personalization, and making recommendations
    corecore