23,223 research outputs found

    VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics.

    Get PDF
    VectorBase (http://www.vectorbase.org) is a NIAID-supported bioinformatics resource for invertebrate vectors of human pathogens. It hosts data for nine genomes: mosquitoes (three Anopheles gambiae genomes, Aedes aegypti and Culex quinquefasciatus), tick (Ixodes scapularis), body louse (Pediculus humanus), kissing bug (Rhodnius prolixus) and tsetse fly (Glossina morsitans). Hosted data range from genomic features and expression data to population genetics and ontologies. We describe improvements and integration of new data that expand our taxonomic coverage. Releases are bi-monthly and include the delivery of preliminary data for emerging genomes. Frequent updates of the genome browser provide VectorBase users with increasing options for visualizing their own high-throughput data. One major development is a new population biology resource for storing genomic variations, insecticide resistance data and their associated metadata. It takes advantage of improved ontologies and controlled vocabularies. Combined, these new features ensure timely release of multiple types of data in the public domain while helping overcome the bottlenecks of bioinformatics and annotation by engaging with our user community

    Integration of Biological Sources: Exploring the Case of Protein Homology

    Get PDF
    Data integration is a key issue in the domain of bioin- formatics, which deals with huge amounts of heteroge- neous biological data that grows and changes rapidly. This paper serves as an introduction in the field of bioinformatics and the biological concepts it deals with, and an exploration of the integration problems a bioinformatics scientist faces. We examine ProGMap, an integrated protein homology system used by bioin- formatics scientists at Wageningen University, and several use cases related to protein homology. A key issue we identify is the huge manual effort required to unify source databases into a single resource. Un- certain databases are able to contain several possi- ble worlds, and it has been proposed that they can be used to significantly reduce initial integration efforts. We propose several directions for future work where uncertain databases can be applied to bioinformatics, with the goal of furthering the cause of bioinformatics integration

    Visualization for biomedical ontologies alignment

    Get PDF
    Tese de mestrado, Bioinformática e Biologia Computacional (Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2016Desde o início do século, a investigação biomédica e a prática clínica levaram a uma acumulação de grandes quantidades de informação, por exemplo, os dados resultantes da sequenciação genómica ou os registos médicos. As ontologias fornecem um modelo estruturado com o intuito de representar o conhecimento e têm sido bem sucedidas no domínio biomédico na melhoria da interoperabilidade e partilha. O desenvolvimento desconectado das ontologias biomédicas levou à criação de modelos que apresentam domínios idênticos ou sobrepostos. As técnicas de emparelhamento de ontologias foram desenvolvidas afim de estabelecer ligações significativas entre as classes das ontologias, por outras palavras, para criar alinhamentos. Para alcançar um alinhamento ótimo é, não só importante melhorar as técnicas de emparelhamentos mas também criar as ferramentas necessárias para que possa existir intervenção humana, particularmente na visualização. Apesar da importância da intervenção de utilizadores e da visualização no emparelhamento de ontologias, poucos sistemas o suportam, sobretudo para grandes e complexas ontologias como as do domínio biomédico, concretamente no contexto da revisão de alinhamentos e interpretação de incoerências lógicas. O objetivo central desta tese consistiu na investigação dos principais paradigmas de visualização de ontologias, no contexto do alinhamento de ontologias biomédicas, e desenvolver abordagens de visualização e interação que vão de encontro a estes desafios. O trabalho desenvolvido levou, então, à criação de um novo módulo de visualização para um sistema de emparelhamento do state of the art que suporta a revisão de alinhamentos, e à construção de uma ferramenta online que visa ajudar o utilizador a compreender os conflitos encontrados nos alinhamentos, ambos baseados numa abordagem de visualização de subgrafos. Ambas as contribuições foram avaliadas em pequena escala, por testes a utilizadores que revelaram a relevância da visualização de subgrafos contra a visualização em árvore, mais comum no domínio biomédico.Since the begin of the century, biomedical research and clinical practice have resulted in the accumulation of very large amounts of information, e.g. data from genomic sequencing or medical records. Ontologies provide a structured model to represent knowledge and have been quite successful in the biomedical domain at improving interoperability and sharing. The disconnected development of biomedical ontologies has led to the creation of models that have overlapping or even equal domains. Ontology matching techniques were developed to establish meaningful connections between classes of the ontologies, in other words to create alignments. In order to achieve an optimal alignment, it is not only important to improve the matching techniques but also to create the necessary tools for human intervention, namely in visualization. Despite the importance of user intervention and visualization in ontology matching, few systems support these, especially for large and complex ontologies such as those in the biomedical domain, specifically in the context of the alignment revision and logical incoherence explanation. The central objective of this thesis was to investigate the main ontology visualization paradigms, in the context of biomedical ontology matching, and to develop visualization and interaction approaches addressing those challenges. The work developed lead to the creation of a new visualization module for a state of the art ontology matching system, that supports the alignment review, and to the construction of an online tool that aims to help the user understand the conflicts found in the alignments both based on a subgraph visualization approach. Both contributions were evaluated, in a small-scale, by user tests that revealed the relevance of subgraph visualization versus the more common tree visualization for the biomedical domain

    Exploiting conceptual spaces for ontology integration

    Get PDF
    The widespread use of ontologies raises the need to integrate distinct conceptualisations. Whereas the symbolic approach of established representation standards – based on first-order logic (FOL) and syllogistic reasoning – does not implicitly represent semantic similarities, ontology mapping addresses this problem by aiming at establishing formal relations between a set of knowledge entities which represent the same or a similar meaning in distinct ontologies. However, manually or semi-automatically identifying similarity relationships is costly. Hence, we argue, that representational facilities are required which enable to implicitly represent similarities. Whereas Conceptual Spaces (CS) address similarity computation through the representation of concepts as vector spaces, CS rovide neither an implicit representational mechanism nor a means to represent arbitrary relations between concepts or instances. In order to overcome these issues, we propose a hybrid knowledge representation approach which extends FOL-based ontologies with a conceptual grounding through a set of CS-based representations. Consequently, semantic similarity between instances – represented as members in CS – is indicated by means of distance metrics. Hence, automatic similarity detection across distinct ontologies is supported in order to facilitate ontology integration
    corecore