18,741 research outputs found

    Comparison between audio and tactile systems for delivering simple navigational information to visually impaired pedestrians

    Get PDF
    Many of the current GPS (Global Positioning Systems) navigation aids use an audio method to deliver navigation information to the user. For the visually impaired person this method can be problematic. The visually impaired pedestrian relies heavily on information contained within the ambient sound environment; for location and orientation information, navigation information, and importantly, safety information. In this paper we present the design of an innovative tactile interface and verification of results obtained through experimental trials. This pilot study compared the efficiency of the tactile interface, to an audio method of delivering simple navigational information. The findings indicate that the tactile interface could be used successfully by blind and sighted pedestrians and may offer advantages over auditory interfaces

    Student Teaching and Research Laboratory Focusing on Brain-computer Interface Paradigms - A Creative Environment for Computer Science Students -

    Full text link
    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.Comment: 4 pages, 4 figures, accepted for EMBC 2015, IEEE copyrigh

    Tactons: structured tactile messages for non-visual information display

    Get PDF
    Tactile displays are now becoming available in a form that can be easily used in a user interface. This paper describes a new form of tactile output. Tactons, or tactile icons, are structured, abstract messages that can be used to communicate messages non-visually. A range of different parameters can be used for Tacton construction including: frequency, amplitude and duration of a tactile pulse, plus other parameters such as rhythm and location. Tactons have the potential to improve interaction in a range of different areas, particularly where the visual display is overloaded, limited in size or not available, such as interfaces for blind people or in mobile and wearable devices. This paper describes Tactons, the parameters used to construct them and some possible ways to design them. Examples of where Tactons might prove useful in user interfaces are given
    • …
    corecore