750 research outputs found

    Authorization schema for electronic health-care records: for Uganda

    Get PDF
    This thesis discusses how to design an authorization schema focused on ensuring each patient's data privacy within a hospital information system

    Context Mediation in the Semantic Web: Handling OWL Ontology and Data Disparity through Context Interchange

    Get PDF
    The COntext INterchange (COIN) strategy is an approach to solving the problem of interoperability of semantically heterogeneous data sources through context mediation. COIN has used its own notation and syntax for representing ontologies. More recently, the OWL Web Ontology Language is becoming established as the W3C recommended ontology language. We propose the use of the COIN strategy to solve context disparity and ontology interoperability problems in the emerging Semantic Web – both at the ontology level and at the data level. In conjunction with this, we propose a version of the COIN ontology model that uses OWL and the emerging rules interchange language, RuleML.Singapore-MIT Alliance (SMA

    Coping with collaborative and competitive episodes within collaborative remote laboratories

    No full text
    International audienceIn this paper, we provide an original approach to the support of group awareness within collaborative remote laboratories. Computer Supported Collaborative Learning sessions present successively collaborative and emulation episodes. The idea developed here is the elaboration of an architecture for dealing with those two aspects of collaborative sessions for practical remote hands-on approaches. Our purpose is to manage and enhance the learning experience brought to the students who are using collaborative remote laboratories by managing several synchronous accesses made on the remote laboratories platform itself. This contribution relies on an original domain ontology and the associated knowledge management system

    Automatic Geospatial Data Conflation Using Semantic Web Technologies

    Get PDF
    Duplicate geospatial data collections and maintenance are an extensive problem across Australia government organisations. This research examines how Semantic Web technologies can be used to automate the geospatial data conflation process. The research presents a new approach where generation of OWL ontologies based on output data models and presenting geospatial data as RDF triples serve as the basis for the solution and SWRL rules serve as the core to automate the geospatial data conflation processes

    Towards Interoperability in E-health Systems: a three-dimensional approach based on standards and semantics

    Get PDF
    Proceedings of: HEALTHINF 2009 (International Conference on Helath Informatics), Porto (Portugal), January 14-17, 2009, is part of BIOSTEC (Intemational Joint Conference on Biomedical Engineering Systems and Technologies)The interoperability problem in eHealth can only be addressed by mean of combining standards and technology. However, these alone do not suffice. An appropiate framework that articulates such combination is required. In this paper, we adopt a three-dimensional (information, conference and inference) approach for such framework, based on OWL as formal language for terminological and ontological health resources, SNOMED CT as lexical backbone for all such resources, and the standard CEN 13606 for representing EHRs. Based on tha framewok, we propose a novel form for creating and supporting networks of clinical terminologies. Additionally, we propose a number of software modules to semantically process and exploit EHRs, including NLP-based search and inference, wich can support medical applications in heterogeneous and distributed eHealth systems.This work has been funded as part of the Spanish nationally funded projects ISSE (FIT-350300-2007-75) and CISEP (FIT-350301-2007-18). We also acknowledge IST-2005-027595 EU project NeO

    Knowledge modelling of emerging technologies for sustainable building development

    Get PDF
    In the quest for improved performance of buildings and mitigation of climate change, governments are encouraging the use of innovative sustainable building technologies. Consequently, there is now a large amount of information and knowledge on sustainable building technologies over the web. However, internet searches often overwhelm practitioners with millions of pages that they browse to identify suitable innovations to use on their projects. It has been widely acknowledged that the solution to this problem is the use of a machine-understandable language with rich semantics - the semantic web technology. This research investigates the extent to which semantic web technologies can be exploited to represent knowledge about sustainable building technologies, and to facilitate system decision-making in recommending appropriate choices for use in different situations. To achieve this aim, an exploratory study on sustainable building and semantic web technologies was conducted. This led to the use of two most popular knowledge engineering methodologies - the CommonKADS and "Ontology Development 101" in modelling knowledge about sustainable building technology and PV -system domains. A prototype system - Photo Voltaic Technology ONtology System (PV -TONS) - that employed sustainable building technology and PV -system domain knowledge models was developed and validated with a case study. While the sustainable building technology ontology and PV -TONS can both be used as generic knowledge models, PV -TONS is extended to include applications for the design and selection of PV -systems and components. Although its focus was on PV -systems, the application of semantic web technologies can be extended to cover other areas of sustainable building technologies. The major challenges encountered in this study are two-fold. First, many semantic web technologies are still under development and very unstable, thus hindering their full exploitation. Second, the lack of learning resources in this field steepen the learning curve and is a potential set-back in using semantic web technologies

    Integrating Distributed Sources of Information for Construction Cost Estimating using Semantic Web and Semantic Web Service technologies

    Get PDF
    A construction project requires collaboration of several organizations such as owner, designer, contractor, and material supplier organizations. These organizations need to exchange information to enhance their teamwork. Understanding the information received from other organizations requires specialized human resources. Construction cost estimating is one of the processes that requires information from several sources including a building information model (BIM) created by designers, estimating assembly and work item information maintained by contractors, and construction material cost data provided by material suppliers. Currently, it is not easy to integrate the information necessary for cost estimating over the Internet. This paper discusses a new approach to construction cost estimating that uses Semantic Web technology. Semantic Web technology provides an infrastructure and a data modeling format that enables accessing, combining, and sharing information over the Internet in a machine processable format. The estimating approach presented in this paper relies on BIM, estimating knowledge, and construction material cost data expressed in a web ontology language. The approach presented in this paper makes the various sources of estimating data accessible as Simple Protocol and Resource Description Framework Query Language (SPARQL) endpoints or Semantic Web Services. We present an estimating application that integrates distributed information provided by project designers, contractors, and material suppliers for preparing cost estimates. The purpose of this paper is not to fully automate the estimating process but to streamline it by reducing human involvement in repetitive cost estimating activities
    corecore