43 research outputs found

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial

    HAPS for 6G Networks: Potential Use Cases, Open Challenges, and Possible Solutions

    Full text link
    High altitude platform station (HAPS), which is deployed in the stratosphere at an altitude of 20-50 kilometres, has attracted much attention in recent years due to their large footprint, line-of-sight links, and fixed position relative to the Earth. Compared with existing network infrastructure, HAPS has a much larger coverage area than terrestrial base stations and is much closer than satellites to the ground users. Besides small-cells and macro-cells, a HAPS can offer one mega-cell, which can complement legacy networks in 6G and beyond wireless systems. This paper explores potential use cases and discusses relevant open challenges of integrating HAPS into legacy networks, while also suggesting some solutions to these challenges. The cumulative density functions of spectral efficiency of the integrated network and cell-edge users are studied and compared with terrestrial network. The results show the capacity gains achieved by the integrated network are beneficial to cell-edge users. Furthermore, the advantages of a HAPS for backhauling aerial base stations are demonstrated by the simulation results

    Joint Beamforming and User Association Design for Integrated HAPS-Terrestrial Networks

    Full text link
    Located in the stratospheric layer of Earth's atmosphere, the high altitude platform station (HAPS) is a promising network infrastructure, which can bring significant advantages to sixth-generation (6G) and beyond wireless communications systems by forming vertical heterogeneous networks (vHetNets). However, if not dealt with properly, integrated networks suffer from several performance challenges compared to standalone networks. In harmonized integrated networks, where different tiers share the same frequency spectrum, interference is an important challenge to be addressed. This work focuses on an integrated HAPS-terrestrial network, serving users in an overlapped urban geographic area, and formulates a fairness optimization problem, aiming to maximize the minimum spectral efficiency (SE) of the network. Due to the highly nonconvex nature of the formulated problem, we develop a rapid converging iterative algorithm that designs the massive multiple-input multiple-output (mMIMO) beamforming weights and the user association scheme such that the propagated inter- and intra-tier interference is managed. Simulation results demonstrate the proposed algorithm's superiority over standalone terrestrial networks and scenario where only the beamforming weights are optimized.Comment: 8 pages singlecolumn, 5 figures, under review in IEEE Communications Letter

    Terahertz-Enpowered Communications and Sensing in 6G Systems: Opportunities and Challenges

    Full text link
    The current focus of academia and the telecommunications industry has been shifted to the development of the six-generation (6G) cellular technology, also formally referred to as IMT-2030. Unprecedented applications that 6G aims to accommodate demand extreme communications performance and, in addition, disruptive capabilities such as network sensing. Recently, there has been a surge of interest in terahertz (THz) frequencies as it offers not only massive spectral resources for communication but also distinct advantages in sensing, positioning, and imaging. The aim of this paper is to provide a brief outlook on opportunities opened by this under-exploited band and challenges that must be addressed to materialize the potential of THz-based communications and sensing in 6G systems.Comment: 2023 the 9th International Conference on Computer and Communications (ICCC). arXiv admin note: text overlap with arXiv:2307.1032

    The Coverage, Capacity and Coexistence of Mixed High Altitude Platform and Terrestrial Segments

    Get PDF
    This thesis explores the coverage, capacity and coexistence of High Altitude Platform (HAP) and terrestrial segments in the same service area. Given the limited spectrum available, mechanisms to manage the co-channel interference to enable effective coexistence between the two infrastructures are examined. Interference arising from the HAP, caused by the relatively high transmit power and the antenna beam profile, has the potential to significantly affect the existing terrestrial system on the ground if the HAP beams are deployed without a proper strategy. Beam-pointing strategies exploiting phased array antennas on the HAPs are shown to be an effective way to place the beams, with each of them forming service cells onto the ground in the service area, especially dense user areas. Using a newly developed RF clustering technique to better point the cells over an area of a dense group of users, it is shown that near maximum coverage of 96% of the population over the service area can be provided while maintaining the coexistence with the existing terrestrial system. To improve the user experience at the cell edge, while at the same time improving the overall capacity of the system, Joint Transmission – Coordinated Multipoint (JT-CoMP) is adapted for a HAP architecture. It is shown how the HAP can potentially enable the tight scheduling needed to perform JT-CoMP due to the centralisation of all virtual E-UTRAN Node Bs (eNodeBs) on the HAP. A trade-off between CINR gain and loss of capacity when adapting JT-CoMP into the HAP system is identified, and strategies to minimise the trade-off are considered. It is shown that 57% of the users benefit from the JT-CoMP. In order to enable coordination between the HAP and terrestrial segments, a joint architecture based on a Cloud – Radio Access Network (C-RAN) system is introduced. Apart from adapting a C-RAN based system to centrally connect the two segments together, the network functional split which varies the degree of the centralised processing is also considered to deal with the limitations of HAP fronthaul link requirements. Based on the fronthaul link requirements acquired from the different splitting options, the ground relay station diversity to connect the HAP to centralised and distributed units (CUs and DUs) is also considered

    Space-Air-Ground Integrated 6G Wireless Communication Networks: A Review of Antenna Technologies and Application Scenarios

    Get PDF
    A review of technological solutions and advances in the framework of a Vertical Heterogeneous Network (VHetNet) integrating satellite, airborne and terrestrial networks is presented. The disruptive features and challenges offered by a fruitful cooperation among these segments within a ubiquitous and seamless wireless connectivity are described. The available technologies and the key research directions for achieving global wireless coverage by considering all these layers are thoroughly discussed. Emphasis is placed on the available antenna systems in satellite, airborne and ground layers by highlighting strengths and weakness and by providing some interesting trends in research. A summary of the most suitable applicative scenarios for future 6G wireless communications are finally illustrated

    Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive View

    Full text link
    The next-generation wireless technologies, commonly referred to as the sixth generation (6G), are envisioned to support extreme communications capacity and in particular disruption in the network sensing capabilities. The terahertz (THz) band is one potential enabler for those due to the enormous unused frequency bands and the high spatial resolution enabled by both short wavelengths and bandwidths. Different from earlier surveys, this paper presents a comprehensive treatment and technology survey on THz communications and sensing in terms of the advantages, applications, propagation characterization, channel modeling, measurement campaigns, antennas, transceiver devices, beamforming, networking, the integration of communications and sensing, and experimental testbeds. Starting from the motivation and use cases, we survey the development and historical perspective of THz communications and sensing with the anticipated 6G requirements. We explore the radio propagation, channel modeling, and measurements for THz band. The transceiver requirements, architectures, technological challenges, and approaches together with means to compensate for the high propagation losses by appropriate antenna and beamforming solutions. We survey also several system technologies required by or beneficial for THz systems. The synergistic design of sensing and communications is explored with depth. Practical trials, demonstrations, and experiments are also summarized. The paper gives a holistic view of the current state of the art and highlights the issues and challenges that are open for further research towards 6G.Comment: 55 pages, 10 figures, 8 tables, submitted to IEEE Communications Surveys & Tutorial

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out

    Data Center-Enabled High Altitude Platforms: A Green Computing Alternative

    Full text link
    Information technology organizations and companies are seeking greener alternatives to traditional terrestrial data centers to mitigate global warming and reduce carbon emissions. Currently, terrestrial data centers consume a significant amount of energy, estimated at about 1.5% of worldwide electricity use. Furthermore, the increasing demand for data-intensive applications is expected to raise energy consumption, making it crucial to consider sustainable computing paradigms. In this study, we propose a data center-enabled High Altitude Platform (HAP) system, where a flying data center supports the operation of terrestrial data centers. We conduct a detailed analytical study to assess the energy benefits and communication requirements of this approach. Our findings demonstrate that a data center-enabled HAP is more energy-efficient than a traditional terrestrial data center, owing to the naturally low temperature in the stratosphere and the ability to harvest solar energy. Adopting a data center-HAP can save up to 14% of energy requirements while overcoming the offloading outage problem and the associated delay resulting from server distribution. Our study highlights the potential of a data center-enabled HAP system as a sustainable computing solution to meet the growing energy demands and reduce carbon footprint
    corecore