27,595 research outputs found

    Wearable and mobile devices

    Get PDF
    Information and Communication Technologies, known as ICT, have undergone dramatic changes in the last 25 years. The 1980s was the decade of the Personal Computer (PC), which brought computing into the home and, in an educational setting, into the classroom. The 1990s gave us the World Wide Web (the Web), building on the infrastructure of the Internet, which has revolutionized the availability and delivery of information. In the midst of this information revolution, we are now confronted with a third wave of novel technologies (i.e., mobile and wearable computing), where computing devices already are becoming small enough so that we can carry them around at all times, and, in addition, they have the ability to interact with devices embedded in the environment. The development of wearable technology is perhaps a logical product of the convergence between the miniaturization of microchips (nanotechnology) and an increasing interest in pervasive computing, where mobility is the main objective. The miniaturization of computers is largely due to the decreasing size of semiconductors and switches; molecular manufacturing will allow for “not only molecular-scale switches but also nanoscale motors, pumps, pipes, machinery that could mimic skin” (Page, 2003, p. 2). This shift in the size of computers has obvious implications for the human-computer interaction introducing the next generation of interfaces. Neil Gershenfeld, the director of the Media Lab’s Physics and Media Group, argues, “The world is becoming the interface. Computers as distinguishable devices will disappear as the objects themselves become the means we use to interact with both the physical and the virtual worlds” (Page, 2003, p. 3). Ultimately, this will lead to a move away from desktop user interfaces and toward mobile interfaces and pervasive computing

    Evaluation of a Head-Worn Display with Ambient Vision Cues for Unusual Attitude Recovery

    Get PDF
    A Commercial Aviation Safety Team (CAST) study of 18 loss-of-control events determined that a lack of external visual references was a contributing factor in 17 of these events. CAST recommended that manufacturers should develop and implement virtual day-VMC display systems, such as synthetic vision (SV) or equivalent systems (CAST Safety Enhancement, SE-200). In support of this recommended action, CAST has requested studies to define minimum requirements for virtual day-visual meteorological conditions (VMC) displays to improve flight crew awareness of airplane attitude. NASAs research in Virtual day-VMC displays, known as synthetic vision systems, are intended to support intuitive flight crew attitude awareness similar to a day-VMC-like environment, especially if they could be designed to create visual dominance. A study was conducted to evaluate the utility of ambient vision (AV) cues paired with virtual Head-Up Display (HUD) symbology on a prototype head-worn display (HWD) during recovery from unusual attitudes in a simulated environment. The virtual-HUD component meets the requirement that the HWD may be used as an equivalent display to the HUD. The presence of AV cueing leverages the potential that a HWD has over the HUD for spatial disorientation prevention. The simulation study was conducted as a single-pilot operation, under realistic flight scenarios, with off-nominal events occurring that were capable of inducing unusual attitudes. Independent variables of the experiment included: 1) AV capability (on vs off) 2) AV display opaqueness (transparent vs opaque) and display location (HWD vs traditional head- down displays); AV cues were only present when the HWD was being worn by the subject pilot

    Collaboration in Augmented Reality: How to establish coordination and joint attention?

    Get PDF
    Schnier C, Pitsch K, Dierker A, Hermann T. Collaboration in Augmented Reality: How to establish coordination and joint attention? In: Boedker S, Bouvin NO, Lutters W, Wulf V, Ciolfi L, eds. Proceedings of the 12th European Conference on Computer Supported Cooperative Work (ECSCW 2011). Springer-Verlag London; 2011: 405-416.We present an initial investigation from a semi-experimental setting, in which an HMD-based AR-system has been used for real-time collaboration in a task-oriented scenario (design of a museum exhibition). Analysis points out the specific conditions of interacting in an AR environment and focuses on one particular practical problem for the participants in coordinating their interaction: how to establish joint attention towards the same object or referent. Analysis allows insights into how the pair of users begins to familarize with the environment, the limitations and opportunities of the setting and how they establish new routines for e.g. solving the ʻjoint attentionʌ-problem

    Wearable performance

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the link below - Copyright @ 2009 Taylor & FrancisWearable computing devices worn on the body provide the potential for digital interaction in the world. A new stage of computing technology at the beginning of the 21st Century links the personal and the pervasive through mobile wearables. The convergence between the miniaturisation of microchips (nanotechnology), intelligent textile or interfacial materials production, advances in biotechnology and the growth of wireless, ubiquitous computing emphasises not only mobility but integration into clothing or the human body. In artistic contexts one expects such integrated wearable devices to have the two-way function of interface instruments (e.g. sensor data acquisition and exchange) worn for particular purposes, either for communication with the environment or various aesthetic and compositional expressions. 'Wearable performance' briefly surveys the context for wearables in the performance arts and distinguishes display and performative/interfacial garments. It then focuses on the authors' experiments with 'design in motion' and digital performance, examining prototyping at the DAP-Lab which involves transdisciplinary convergences between fashion and dance, interactive system architecture, electronic textiles, wearable technologies and digital animation. The concept of an 'evolving' garment design that is materialised (mobilised) in live performance between partners originates from DAP Lab's work with telepresence and distributed media addressing the 'connective tissues' and 'wearabilities' of projected bodies through a study of shared embodiment and perception/proprioception in the wearer (tactile sensory processing). Such notions of wearability are applied both to the immediate sensory processing on the performer's body and to the processing of the responsive, animate environment. Wearable computing devices worn on the body provide the potential for digital interaction in the world. A new stage of computing technology at the beginning of the 21st Century links the personal and the pervasive through mobile wearables. The convergence between the miniaturisation of microchips (nanotechnology), intelligent textile or interfacial materials production, advances in biotechnology and the growth of wireless, ubiquitous computing emphasises not only mobility but integration into clothing or the human body. In artistic contexts one expects such integrated wearable devices to have the two-way function of interface instruments (e.g. sensor data acquisition and exchange) worn for particular purposes, either for communication with the environment or various aesthetic and compositional expressions. 'Wearable performance' briefly surveys the context for wearables in the performance arts and distinguishes display and performative/interfacial garments. It then focuses on the authors' experiments with 'design in motion' and digital performance, examining prototyping at the DAP-Lab which involves transdisciplinary convergences between fashion and dance, interactive system architecture, electronic textiles, wearable technologies and digital animation. The concept of an 'evolving' garment design that is materialised (mobilised) in live performance between partners originates from DAP Lab's work with telepresence and distributed media addressing the 'connective tissues' and 'wearabilities' of projected bodies through a study of shared embodiment and perception/proprioception in the wearer (tactile sensory processing). Such notions of wearability are applied both to the immediate sensory processing on the performer's body and to the processing of the responsive, animate environment

    Eyewear Computing \u2013 Augmenting the Human with Head-Mounted Wearable Assistants

    Get PDF
    The seminar was composed of workshops and tutorials on head-mounted eye tracking, egocentric vision, optics, and head-mounted displays. The seminar welcomed 30 academic and industry researchers from Europe, the US, and Asia with a diverse background, including wearable and ubiquitous computing, computer vision, developmental psychology, optics, and human-computer interaction. In contrast to several previous Dagstuhl seminars, we used an ignite talk format to reduce the time of talks to one half-day and to leave the rest of the week for hands-on sessions, group work, general discussions, and socialising. The key results of this seminar are 1) the identification of key research challenges and summaries of breakout groups on multimodal eyewear computing, egocentric vision, security and privacy issues, skill augmentation and task guidance, eyewear computing for gaming, as well as prototyping of VR applications, 2) a list of datasets and research tools for eyewear computing, 3) three small-scale datasets recorded during the seminar, 4) an article in ACM Interactions entitled \u201cEyewear Computers for Human-Computer Interaction\u201d, as well as 5) two follow-up workshops on \u201cEgocentric Perception, Interaction, and Computing\u201d at the European Conference on Computer Vision (ECCV) as well as \u201cEyewear Computing\u201d at the ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp)
    • 

    corecore