803 research outputs found

    Um framework para a avaliação de segurança de hardware

    Get PDF
    Orientador: Ricardo DahabDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O hardware de sistemas computacionais possui uma função crítica na segurança de sistemas operacionais e aplicativos. Além de prover funcionalidades-padrão, tal como o nível de privilégio de execução, o hardware também pode oferecer suporte a criptografia, boot seguro, execução segura, e outros. Com o fim de garantir que essas funcionalidades de segurança irão operar corretamente quando juntas dentro de um sistema, e de que o sistema é seguro como um todo, é necessário avaliar a segurança da arquitetura de todo sistema, durante o ciclo de desenvolvimento do hardware. Neste trabalho, iniciamos pela pesquisa dos diferentes tipos existentes de vulnerabilidades de hardware, e propomos uma taxonomia para classificá-los. Nossa taxonomia é capaz de classificar as vulnerabilidades de acordo com o ponto no qual elas foram inseridas, dentro do ciclo de desenvolvimento. Ela também é capaz de separar as vulnerabilidades de hardware daquelas de software que apenas se aproveitam de funcionalidades-padrão do hardware. Focando em um tipo específico de vulnerabilidade - aquelas relacionadas à arquitetura - apresentamos um método para a avaliação de sistemas de hardware utilizando a metodologia de Assurance Cases. Essa metodologia tem sido usada com sucesso para a análise de segurança física e, tanto quanto saibamos, não há notícias de seu uso para a análise de segurança de hardware. Utilizando esse método, pudemos identificar corretamente as vulnerabilidades de sistemas reais. Por fim, apresentamos uma prova de conceito de uma ferramenta para guiar e automatizar parte do processo de análise que foi proposto. A partir de uma descrição padronizada de uma arquitetura de hardware, a ferramenta aplica uma série de regras de um sistema especialista e gera um relatório de Assurance Case com as possíveis vulnerabilidades do sistema-alvo. Aplicamos a ferramenta aos sistemas estudados e pudemos identificar com sucesso as vulnerabilidades conhecidas, assim como outras possíveis vulnerabilidadesAbstract: The hardware of computer systems plays a critical role in the security of operating systems and applications. Besides providing standard features such as execution privilege levels, it may also offer support for encryption, secure execution, secure boot, and others. In order to guarantee that these security features work correctly when inside a system, and that the system is secure as a whole, it is necessary to evaluate the security of the architecture during the hardware development life-cycle. In this work, we start by exploring the different types of existing hardware vulnerabilities and propose a taxonomy for classifying them. Our taxonomy is able to classify vulnerabilities according to when they were created during the development life-cycle, as well as separating real hardware vulnerabilities from software vulnerabilities that leverage standard hardware features. Focusing on a specific type of vulnerability - the architecture-related ones, we present a method for evaluating hardware systems using the Assurance Case methodology. This methodology has been used successfully for safety analysis, and to our best knowledge there are no reports of its use for hardware security analysis. Using this method, we were able to correctly identify the vulnerabilities of real-world systems. Lastly, we present the proof-of-concept of a tool for guiding and automating part of the proposed analysis methodology. Starting from a standardized hardware architecture description, the tool applies a set of expert system rules, and generates an Assurance Case report that contains the possible security vulnerabilities of a system. We were able to apply the tool to the studied systems, and correctly identify their known vulnerabilities, as well as other possible vulnerabilitiesMestradoCiência da ComputaçãoMestre em Ciência da Computaçã

    A Survey of Techniques for Architecting TLBs

    Get PDF
    “Translation lookaside buffer” (TLB) caches virtual to physical address translation information and is used in systems ranging from embedded devices to high-end servers. Since TLB is accessed very frequently and a TLB miss is extremely costly, prudent management of TLB is important for improving performance and energy efficiency of processors. In this paper, we present a survey of techniques for architecting and managing TLBs. We characterize the techniques across several dimensions to highlight their similarities and distinctions. We believe that this paper will be useful for chip designers, computer architects and system engineers

    A Pervasive Computational Intelligence based Cognitive Security Co-design Framework for Hype-connected Embedded Industrial IoT

    Get PDF
    The amplified connectivity of routine IoT entities can expose various security trajectories for cybercriminals to execute malevolent attacks. These dangers are even amplified by the source limitations and heterogeneity of low-budget IoT/IIoT nodes, which create existing multitude-centered and fixed perimeter-oriented security tools inappropriate for vibrant IoT settings. The offered emulation assessment exemplifies the remunerations of implementing context aware co-design oriented cognitive security method in assimilated IIoT settings and delivers exciting understandings in the strategy execution to drive forthcoming study. The innovative features of our system is in its capability to get by with irregular system connectivity as well as node limitations in terms of scares computational ability, limited buffer (at edge node), and finite energy. Based on real-time analytical data, projected scheme select the paramount probable end-to-end security system possibility that ties with an agreed set of node constraints. The paper achieves its goals by recognizing some gaps in the security explicit to node subclass that is vital to our system’s operations

    Re-use of tests and arguments for assesing dependable mixed-critically systems

    Get PDF
    The safety assessment of mixed-criticality systems (MCS) is a challenging activity due to system heterogeneity, design constraints and increasing complexity. The foundation for MCSs is the integrated architecture paradigm, where a compact hardware comprises multiple execution platforms and communication interfaces to implement concurrent functions with different safety requirements. Besides a computing platform providing adequate isolation and fault tolerance mechanism, the development of an MCS application shall also comply with the guidelines defined by the safety standards. A way to lower the overall MCS certification cost is to adopt a platform-based design (PBD) development approach. PBD is a model-based development (MBD) approach, where separate models of logic, hardware and deployment support the analysis of the resulting system properties and behaviour. The PBD development of MCSs benefits from a composition of modular safety properties (e.g. modular safety cases), which support the derivation of mixed-criticality product lines. The validation and verification (V&V) activities claim a substantial effort during the development of programmable electronics for safety-critical applications. As for the MCS dependability assessment, the purpose of the V&V is to provide evidences supporting the safety claims. The model-based development of MCSs adds more V&V tasks, because additional analysis (e.g., simulations) need to be carried out during the design phase. During the MCS integration phase, typically hardware-in-the-loop (HiL) plant simulators support the V&V campaigns, where test automation and fault-injection are the key to test repeatability and thorough exercise of the safety mechanisms. This dissertation proposes several V&V artefacts re-use strategies to perform an early verification at system level for a distributed MCS, artefacts that later would be reused up to the final stages in the development process: a test code re-use to verify the fault-tolerance mechanisms on a functional model of the system combined with a non-intrusive software fault-injection, a model to X-in-the-loop (XiL) and code-to-XiL re-use to provide models of the plant and distributed embedded nodes suited to the HiL simulator, and finally, an argumentation framework to support the automated composition and staged completion of modular safety-cases for dependability assessment, in the context of the platform-based development of mixed-criticality systems relying on the DREAMS harmonized platform.La dificultad para evaluar la seguridad de los sistemas de criticidad mixta (SCM) aumenta con la heterogeneidad del sistema, las restricciones de diseño y una complejidad creciente. Los SCM adoptan el paradigma de arquitectura integrada, donde un hardware embebido compacto comprende múltiples plataformas de ejecución e interfaces de comunicación para implementar funciones concurrentes y con diferentes requisitos de seguridad. Además de una plataforma de computación que provea un aislamiento y mecanismos de tolerancia a fallos adecuados, el desarrollo de una aplicación SCM además debe cumplir con las directrices definidas por las normas de seguridad. Una forma de reducir el coste global de la certificación de un SCM es adoptar un enfoque de desarrollo basado en plataforma (DBP). DBP es un enfoque de desarrollo basado en modelos (DBM), en el que modelos separados de lógica, hardware y despliegue soportan el análisis de las propiedades y el comportamiento emergente del sistema diseñado. El desarrollo DBP de SCMs se beneficia de una composición modular de propiedades de seguridad (por ejemplo, casos de seguridad modulares), que facilitan la definición de líneas de productos de criticidad mixta. Las actividades de verificación y validación (V&V) representan un esfuerzo sustancial durante el desarrollo de aplicaciones basadas en electrónica confiable. En la evaluación de la seguridad de un SCM el propósito de las actividades de V&V es obtener las evidencias que apoyen las aseveraciones de seguridad. El desarrollo basado en modelos de un SCM incrementa las tareas de V&V, porque permite realizar análisis adicionales (por ejemplo, simulaciones) durante la fase de diseño. En las campañas de pruebas de integración de un SCM habitualmente se emplean simuladores de planta hardware-in-the-loop (HiL), en donde la automatización de pruebas y la inyección de faltas son la clave para la repetitividad de las pruebas y para ejercitar completamente los mecanismos de tolerancia a fallos. Esta tesis propone diversas estrategias de reutilización de artefactos de V&V para la verificación temprana de un MCS distribuido, artefactos que se emplearán en ulteriores fases del desarrollo: la reutilización de código de prueba para verificar los mecanismos de tolerancia a fallos sobre un modelo funcional del sistema combinado con una inyección de fallos de software no intrusiva, la reutilización de modelo a X-in-the-loop (XiL) y código a XiL para obtener modelos de planta y nodos distribuidos aptos para el simulador HiL y, finalmente, un marco de argumentación para la composición automatizada y la compleción escalonada de casos de seguridad modulares, en el contexto del desarrollo basado en plataformas de sistemas de criticidad mixta empleando la plataforma armonizada DREAMS.Kritikotasun nahastuko sistemen segurtasun ebaluazioa jarduera neketsua da beraien heterogeneotasuna dela eta. Sistema hauen oinarria arkitektura integratuen paradigman datza, non hardware konpaktu batek exekuzio plataforma eta komunikazio interfaze ugari integratu ahal dituen segurtasun baldintza desberdineko funtzio konkurrenteak inplementatzeko. Konputazio plataformek isolamendu eta akatsen aurkako mekanismo egokiak emateaz gain, segurtasun arauek definituriko jarraibideak jarraitu behar dituzte kritikotasun mistodun aplikazioen garapenean. Sistema hauen zertifikazio prozesuaren kostua murrizteko aukera bat plataformetan oinarritutako garapenean (PBD) datza. Garapen planteamendu hau modeloetan oinarrituriko garapena da (MBD) non modeloaren logika, hardware eta garapen desberdinak sistemaren propietateen eta portaeraren aurka aztertzen diren. Kritikotasun mistodun sistemen PBD garapenak etekina ateratzen dio moduluetan oinarrituriko segurtasun propietateei, adibidez: segurtasun kasu modularrak (MSC). Modulu hauek kritikotasun mistodun produktu-lerroak ere hartzen dituzte kontutan. Berifikazio eta balioztatze (V&V) jarduerek esfortzu kontsideragarria eskatzen dute segurtasun-kiritikoetarako elektronika programagarrien garapenean. Kritikotasun mistodun sistemen konfiantzaren ebaluazioaren eta V&V jardueren helburua segurtasun eskariak jasotzen dituzten frogak proportzionatzea da. Kritikotasun mistodun sistemen modelo bidezko garapenek zeregin gehigarriak atxikitzen dizkio V&V jarduerari, fase honetan analisi gehigarriak (hots, simulazioak) zehazten direlako. Bestalde, kritikotasun mistodun sistemen integrazio fasean, hardware-in-the-loop (Hil) simulazio plantek V&V iniziatibak sostengatzen dituzte non testen automatizazioan eta akatsen txertaketan funtsezko jarduerak diren. Jarduera hauek frogen errepikapena eta segurtasun mekanismoak egiaztzea ahalbidetzen dute. Tesi honek V&V artefaktuen berrerabilpenerako estrategiak proposatzen ditu, kritikotasun mistodun sistemen egiaztatze azkarrerako sistema mailan eta garapen prozesuko azken faseetaraino erabili daitezkeenak. Esate baterako, test kodearen berrabilpena akats aurkako mekanismoak egiaztatzeko, modelotik X-in-the-loop (XiL)-ra eta kodetik XiL-rako konbertsioa HiL simulaziorako eta argumentazio egitura bat DREAMS Europear proiektuan definituriko arkitektura estiloan oinarrituriko segurtasun kasu modularrak automatikoki eta gradualki sortzeko

    Towards certifiable reconfigurable real-time mission critical software systems

    Get PDF
    This thesis makes a contribution towards the certification of reconfigurable real-time mission critical software systems. In highly reconfigurable software systems it is possible for a situation to arise where the system expends most or all of its resources on reconfiguring, and thus cannot provide sufficient resources to conduct intended computing functions. This anomaly has been termed "configuration thrashing" by the author due to its loose analogy to memory thrashing. If configuration thrashing is not eliminated, or at least minimised, then it is possible for circumstance to occur where reconfigurable systems cannot be certified due to potential failure to meet deadlines caused by configuration thrashing. The elimination of reconfiguration thrashing is a step towards certifiable dynamic reconfigurable systems capable of enforcing deadlines. The elimination of reconfiguration thrashing is necessary, though not sufficient, for this goal. In order to restrict configuration thrashing it is necessary to understand the possibilities available within reconfigurable software. A VDM-SL model is presented to explore the options available for reconfigurable architectures, and has allowed many operators to be formally specified providing a much greater understanding of the tasks involved in reconfiguration. The thesis demonstrates how model checkers can be used to check software processes for configuration thrashing using predefined CSP models, thus allowing system programmers to engineer configuration thrashing out of systems. However, model checkers are susceptible to state space explosion, particularly if models are large and / or complex, which may make the use of the model checkers impractical or even impossible for some systems. The thesis therefore also explores potential run-time solutions to configuration thrashing. These solutions allow developers to include additional logic / processes within their systems in order to eliminate configuration thrashing (without the use of model checkers). Several options are explored in-depth, from providing mechanisms for developers to choose when reconfiguration can / cannot occur, to a rule based solution. The exploration of the rule based solution explores issues such as rule expression, rule predictability, as well as potential core rules. The two approaches taken within this thesis to eliminate, or at least restrict sufficiently, configuration thrashing form a basis which would allow for the certification of reconfigurable real-time mission critical software systems.EThOS - Electronic Theses Online ServiceBAE SystemsGBUnited Kingdo

    Flexi-WVSNP-DASH: A Wireless Video Sensor Network Platform for the Internet of Things

    Get PDF
    abstract: Video capture, storage, and distribution in wireless video sensor networks (WVSNs) critically depends on the resources of the nodes forming the sensor networks. In the era of big data, Internet of Things (IoT), and distributed demand and solutions, there is a need for multi-dimensional data to be part of the Sensor Network data that is easily accessible and consumable by humanity as well as machinery. Images and video are expected to become as ubiquitous as is the scalar data in traditional sensor networks. The inception of video-streaming over the Internet, heralded a relentless research for effective ways of distributing video in a scalable and cost effective way. There has been novel implementation attempts across several network layers. Due to the inherent complications of backward compatibility and need for standardization across network layers, there has been a refocused attention to address most of the video distribution over the application layer. As a result, a few video streaming solutions over the Hypertext Transfer Protocol (HTTP) have been proposed. Most notable are Apple’s HTTP Live Streaming (HLS) and the Motion Picture Experts Groups Dynamic Adaptive Streaming over HTTP (MPEG-DASH). These frameworks, do not address the typical and future WVSN use cases. A highly flexible Wireless Video Sensor Network Platform and compatible DASH (WVSNP-DASH) are introduced. The platform's goal is to usher video as a data element that can be integrated into traditional and non-Internet networks. A low cost, scalable node is built from the ground up to be fully compatible with the Internet of Things Machine to Machine (M2M) concept, as well as the ability to be easily re-targeted to new applications in a short time. Flexi-WVSNP design includes a multi-radio node, a middle-ware for sensor operation and communication, a cross platform client facing data retriever/player framework, scalable security as well as a cohesive but decoupled hardware and software design.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    From Safety Analysis to Experimental Validation by Fault Injection—Case of Automotive Embedded Systems

    Get PDF
    En raison de la complexité croissante des systèmes automobiles embarqués, la sûreté de fonctionnement est devenue un enjeu majeur de l’industrie automobile. Cet intérêt croissant s’est traduit par la sortie en 2011 de la norme ISO 26262 sur la sécurité fonctionnelle. Les défis auxquelles sont confrontés les acteurs du domaine sont donc les suivants : d’une part, la conception de systèmes sûrs, et d’autre part, la conformité aux exigences de la norme ISO 26262. Notre approche se base sur l’application systématique de l’injection de fautes pour la vérification et la validation des exigences de sécurité, tout au long du cycle de développement, des phases de conception jusqu’à l’implémentation. L’injection de fautes nous permet en particulier de vérifier que les mécanismes de tolérance aux fautes sont efficaces et que les exigences non-fonctionnelles sont respectées. L’injection de faute est une technique de vérification très ancienne. Cependant, son rôle lors de la phase de conception et ses complémentarités avec la validation expérimentale, méritent d’être étudiés. Notre approche s’appuie sur l’application du modèle FARM (Fautes, Activations, Relevés et Mesures) tout au long du processus de développement. Les analyses de sûreté sont le point de départ de notre approche, avec l'identification des mécanismes de tolérance aux fautes et des exigences non-fonctionnelles, et se terminent par la validation de ces mécanismes par les expériences classiques d'injection de fautes. Enfin, nous montrons que notre approche peut être intégrée dans le processus de développement des systèmes embarqués automobiles décrits dans la norme ISO 26262. Les contributions de la thèse sont illustrées sur l’étude de cas d’un système d’éclairage avant d’une automobile. ABSTRACT : Due to the rising complexity of automotive Electric/Electronic embedded systems, Functional Safety becomes a main issue in the automotive industry. This issue has been formalized by the introduction of the ISO 26262 standard for functional safety in 2011. The challenges are, on the one hand to design safe systems based on a systematic verification and validation approach, and on the other hand, the fulfilment of the requirements of the ISO 26262 standard. Following ISO 26262 recommendations, our approach, based on fault injection, aims at verifying fault tolerance mechanisms and non-functional requirements at all steps of the development cycle, from early design phases down to implementation. Fault injection is a verification technique that has been investigated for a long time. However, the role of fault injection during design phase and its complementarities with the experimental validation of the target have not been explored. In this work, we investigate a fault injection continuum, from system design validation to experiments on implemented targets. The proposed approach considers the safety analyses as a starting point, with the identification of safety mechanisms and safety requirements, and goes down to the validation of the implementation of safety mechanisms through fault injection experiments. The whole approach is based on a key fault injection framework, called FARM (Fault, Activation, Readouts and Measures). We show that this approach can be integrated in the development process of the automotive embedded systems described in the ISO 26262 standard. Our approach is illustrated on an automotive case study: a Front-Light system

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures
    corecore