174 research outputs found

    Evaluating Consistency of Snow Water Equivalent Retrievals from Passive Microwave Sensors over the North Central U. S.: SSM/I vs. SSMIS and AMSR-E vs. AMSR2

    Get PDF
    For four decades, satellite-based passive microwave sensors have provided valuable snow water equivalent (SWE) monitoring at a global scale. Before continuous long-term SWE records can be used for scientific or applied purposes, consistency of SWE measurements among different sensors is required. SWE retrievals from two passive sensors currently operating, the Special Sensor Microwave Imager Sounder (SSMIS) and the Advanced Microwave Scanning Radiometer 2 (AMSR2), have not been fully evaluated in comparison to each other and previous instruments. Here, we evaluated consistency between the Special Sensor Microwave/Imager (SSM/I) onboard the F13 Defense Meteorological Satellite Program (DMSP) and SSMIS onboard the F17 DMSP, from November 2002 to April 2011 using the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) for continuity. Likewise, we evaluated consistency between AMSR-E and AMSR2 SWE retrievals from November 2007 to April 2016, using SSMIS for continuity. The analysis is conducted for 1176 watersheds in the North Central U.S. with consideration of difference among three snow classifications (Warm forest, Prairie, and Maritime). There are notable SWE differences between the SSM/I and SSMIS sensors in the Warm forest class, likely due to the different interpolation methods for brightness temperature (Tb) between the F13 SSM/I and F17 SSMIS sensors. The SWE differences between AMSR2 and AMSR-E are generally smaller than the differences between SSM/I and SSMIS SWE, based on time series comparisons and yearly mean bias. Finally, the spatial bias patterns between AMSR-E and AMSR2 versus SSMIS indicate sufficient spatial consistency to treat the AMSR-E and AMSR2 datasets as one continuous record. Our results provide useful information on systematic differences between recent satellite-based SWE retrievals and suggest subsequent studies to ensure reconciliation between different sensors in long-term SWE records

    Development of a time series-based methodology for estimation of large-area soil wetness over India using IRS-P4 microwave radiometer data

    Get PDF
    Soil moisture is a very important boundary parameter in numerical weather prediction at different spatial and temporal scales. Satellite-based microwave radiometric observations are considered to be the best because of their high sensitivity to soil moisture, apart from possessing all-weather and day-night observation capabilities with high repetitousness. In the present study, 6.6-GHz horizontal-polarization brightness temperature data from the Multifrequency Scanning Microwave Radiometer (MSMR) onboard the Indian Remote Sensing Satellite IRS-P4 have been used for the estimation of large-area-averaged soil wetness. A methodology has been developed for the estimation of soil wetness for the period of June-July from the time series of MSMR brightness temperatures over India. Maximum and minimum brightness temperatures for each pixel are assigned to the driest and wettest periods, respectively. A daily soil wetness index over each pixel is computed by normalizing brightness temperature observations from these extreme values. This algorithm has the advantage that it takes into account the effect of time-invariant factors, such as vegetation, surface roughness, and soil characteristics, on soil wetness estimation. Weekly soil wetness maps compare well to corresponding weekly rainfall maps depicting clearly the regions of dry and wet soil conditions. Comparisons of MSMR-derived soil wetness with in situ observations show a high correlation (R>0.75), with a standard error of the soil moisture estimate of less than 7% (volumetric unit) for the surface (0-5 cm) and subsurface (5-10 cm) soil moisture

    Microwave emissions from snow

    Get PDF
    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow propertie

    Laboratory for Oceans

    Get PDF
    A review is made of the activities of the Laboratory for Oceans. The staff and the research activities are nearly evenly divided between engineering and scientific endeavors. The Laboratory contributes engineering design skills to aircraft and ground based experiments in terrestrial and atmospheric sciences in cooperation with scientists from labs in Earth sciences

    Use of satellite-derived heterogeneous surface soil moisture for numerical weather prediction, The

    Get PDF
    Summer 1996.Bibliography: pages [296]-320

    Earth resources, a continuing bibliography with indexes

    Get PDF
    This bibliography lists 541 reports, articles and other documents introduced into the NASA scientific and technical information system. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Earth Resources: A continuing bibliography with indexes, issue 36

    Get PDF
    This bibliography lists 576 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between October 1 and December 31, 1982. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Earth resources: A continuing bibliography, issue 46

    Get PDF
    This bibliography lists 467 reports, articles and other documents introdcued into the NASA scientific and technical information system between April 1 and June 30, 1985. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental cultural resources geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    Earth resources. A continuing bibliography with indexes, issue 23

    Get PDF
    This bibliography lists 226 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1979 and September 30, 1979. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Earth Resources: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 623 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1983. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    corecore