5,978 research outputs found

    Teaching DfA core knowledge and skill sets; experience in including inclusive design

    Get PDF
    The purpose of this document is twofold. Firstly it is to present the teaching pilots that were undertaken by members of the network, and describes the pilot setting and the material taught, as related to the taxonomy of Design for All knowledge and skill sets developed in previous deliverables. Each pilot indicates topics taught and to which categories of the taxonomy they belong. Furthermore, student expectations and reactions to the DfA teaching pilots are described by means of the information gained from questionnaires. In this way the taxonomy is evaluated by the teaching pilot experiences for robustness in completeness and usefulness. The second purpose of this exercise is to highlight best practices in, and possible obstacles and other challenges to implementing and maintaining of Design for All courses and modules in a range of higher education schemes, so that education policies and strategies may be informed accordingly. Both of these objectives help to further the work on recommendations for curriculum work on Design for All, in terms of content and in terms of sustainability

    The effect of 3D-stereogram mobile AR on engineering drawing course outcomes among first-year vocational high schoolers with different spatial abilities: a Bloom�s taxonomy perspective

    Get PDF
    ABSTRACT Engineering drawing is valuable in capturing geometric features, conveying engineering ideas, and creating a blueprint of the intended product. Engineering students usually perform orthographic projections, imagining a 3D situation and sketching its 2D representation. That requires imagination and mental visualization, determined by the learner�s spatial ability. This study proposes the infusion of an AR stereogram mobile application into an engineering drawing course to establish how it influences learning outcomes among students with different spatial abilities. The quantitative experimental study involved two mechanical engineering classes in northern Taiwan, N = 69 first-year vocational high schoolers. Statistical analysis revealed that the experimental group with high spatial ability recorded better results and excellent drawing skills. Bloom�s taxonomy categorization reported that spatial ability influenced �understanding� and �applying� levels, with the strongest effect on �understanding.� Although no significant interaction existed, learning outcomes were highly affected by spatial ability in �understanding� and �applying� levels and AR in the overall performance. The findings and discussions show AR holds great potential to enhance students� spatial ability for real-time visualization and enables better concept comprehension by improving their understanding of engineering topics. Future studies should consider these implications in creating effective and immersive learning environments for different courses in engineering education

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    From Personalized Medicine to Population Health: A Survey of mHealth Sensing Techniques

    Full text link
    Mobile Sensing Apps have been widely used as a practical approach to collect behavioral and health-related information from individuals and provide timely intervention to promote health and well-beings, such as mental health and chronic cares. As the objectives of mobile sensing could be either \emph{(a) personalized medicine for individuals} or \emph{(b) public health for populations}, in this work we review the design of these mobile sensing apps, and propose to categorize the design of these apps/systems in two paradigms -- \emph{(i) Personal Sensing} and \emph{(ii) Crowd Sensing} paradigms. While both sensing paradigms might incorporate with common ubiquitous sensing technologies, such as wearable sensors, mobility monitoring, mobile data offloading, and/or cloud-based data analytics to collect and process sensing data from individuals, we present a novel taxonomy system with two major components that can specify and classify apps/systems from aspects of the life-cycle of mHealth Sensing: \emph{(1) Sensing Task Creation \& Participation}, \emph{(2) Health Surveillance \& Data Collection}, and \emph{(3) Data Analysis \& Knowledge Discovery}. With respect to different goals of the two paradigms, this work systematically reviews this field, and summarizes the design of typical apps/systems in the view of the configurations and interactions between these two components. In addition to summarization, the proposed taxonomy system also helps figure out the potential directions of mobile sensing for health from both personalized medicines and population health perspectives.Comment: Submitted to a journal for revie

    The application of systems approach for road safety policy making, Deliverable 8.1 of the H2020 project SafetyCube

    Get PDF
    The present Deliverable (D8.1) describes the co-ordination of the analysis of risks and measures using a systems framework within the SafetyCube project. It outlines the results of Task 8.1 of Work Package (WP) 8 of SafetyCube. This has involved (i) defining the systems approach to be used within SafetyCube, (ii) developing a taxonomy of risks and measures, (iii) identifying a common set of accident scenarios and (iv) initiating work on the Decision Support System (DSS) development. WP8 of the SafetyCube project has a number of specific aims, including developing the European DSS for supporting evidence-based policy making. It also aims to co-ordinate analysis undertaken in other WPs ensuring integrated research outputs, compilation of the project outputs into a suitable form to be incorporated within the DSS and the European Road Safety Observatory, and finally to develop tools to enable the continued support of evidence based road safety policies beyond SafetyCube. Evidence-based policy making enables policy makers to make justified decisions in the complex reality of road safety interventions. It refers to the use of objective, scientifically-based evidence in all stages of the policy making process. Two important pillars for evidence-based road safety policy making are road safety data and statistics and scientific knowledge (Wegman et al, 2015). This type of policy making can be beneficial (e.g. helps to identify road safety problems and select most appropriate interventions) but also has it’s challenges (e.g. a lot of information at varying levels of detail is required to inform decisions). The DSS that is being developed within SafetyCube aims to support decision makers as well as other stakeholders in their evidence-based policy making. In addition to evidence-based policy making, SafetyCube and in particular the DSS is grounded in the systems approach. The systems approach aims to steer away from the more traditionally ‘human error’ blame focussed approach to road safety, and instead takes into account all ‘components’ in a system (i.e. road users, vehicles, roads) which contribute to a risk of an accident occurring. In SafetyCube, the systems approach is being integrated in the DSS in two main ways. First, the risk factors which relate to the road user, the road or the vehicle will be linked to measures in any or all of these areas if appropriate. Second, to clarify the added value of complementary measures rather than measures in isolation, where appropriate, a description of a measure will pay special attention to and link to supporting measures. The SafetyCube DSS is underpinned by four taxonomies; Road User Behaviour (WP4), Infrastructure (WP5), Vehicles (WP6) and Post Impact Care (WP7). The taxonomy is a main structural part of the DSS system, it can be used as a search option in the DSS, it creates a uniform structure over all work packages and it can be used as a basis for linking risk factors with their corresponding measures. The structure consists of three levels, which are topic, subtopic and specific topic. Thirteen main topics were identified for Road User Behaviour (WP4), 10 main topics for Infrastructure (WP5) and six main topics for Vehicle (WP6). Four topics (based on the DaCoTA webtext on Post Impact Care, 2012), were included in WP7 (Post Impact Care). As expected, there was found to be some overlap between risk factors in one taxonomy and risk factors in another (e.g. is poor vehicle maintenance a Vehicle or Road User-related risk factor?), and some overlaps where a topic could be a risk factor or a countermeasure. Discussions between WPs ensured decisions could be made about how to overcome these ambiguities. Accident scenarios are used within SafetyCube. These are considered to be a classification system for crashes whereby crash types may be grouped according to similar characteristics under a particular scenario heading, creating specific clusters. In total, nine high level accident scenarios will form an entry point to the DSS. Each high level has multiple sub-levels which provide more detailed information about the conflict situation (before the crash). A total of 63 sub-level scenarios are considered. The task of linking risks and measures is currently underway within the SafetyCube project. The accident scenarios will provide a useful and systematic way by which to link risks and measures. They will be used, in order to generate a meaningful set of links, between risks related to specific situations, and measures to address them. The primary objective of the DSS is to provide the European and Global road safety community a user friendly, web-based, interactive Decision Support Tool which will enable policy-makers and stakeholders to select and implement the most appropriate strategies, measures and cost-effective approaches to reduce casualties and crash severity for all road users. It consists of information such as risk factors, road safety measures, cost-benefit, casualty reduction effectiveness estimates. In order to develop the DSS, a review of current existing Decision Support Systems was carried out to provide a first insight into such tools (e.g. Crash Modification Factors Clearinghouse, PRACT Repository, Road Safety Engineering Kit, iRAP). No European DSS were found in the search and of the DSS reviewed, the majority focussed on infrastructure and no risk factors were included. The SafetyCube DSS addresses these gaps. To understand user needs better, three stakeholders workshops were carried out, which allowed participants to comment on the proposed DSS and suggest ‘hot topics’ (i.e. important risk factors) to address in SafetyCube, and the findings of these workshops found that the DSS should be suitable for use by a wide range of users, should be impartial, include robust data and access to all studies used and generated results. A comprehensive common SafetyCube methodology was designed, which included: a complete taxonomy of human behaviour, infrastructure and vehicle; a detailed and recorded literature review and the development of a template for coding research studies and existing results to be stored in a database linked to the DSS. The DSS is being created on the basis of a number of design principles (e.g. modern web-based tool, ergonomic interface, simple, easily updated
). As well as a consistent layout the content itself is also of high importance (e.g. quantitative results over qualitative, methodologically sound, clarity). The DSS itself consists of the backend (relational database), the front end (website) and the way they integrate (queries). The heart of the DSS consists of the searchable/dynamic and static aspects, which consists of five entry points and three levels. The design principles of the DSS ensure a smooth integration of the Work Packages in two ways, firstly that the SafetyCube common methodology is applied and secondly that the fully linked search allows the end user to better perceive the interactions between various components in road safety. There are five entry points into DSS: ‘text search’, ‘risk factors’, ‘road safety measures’, ‘road user groups’ and ‘accident scenarios’. Once a search has been undertaken using one of these five entry points, a results page is shown to the user, which consists of a table listing the available synopses1 (overview of the topic created by synthesising findings from the coding of existing studies), meta-analysis and other studies in the database. From this, the user can then also access the individual study pages for each study listed in the results. Finally, a Tools page allows the user to access other SafetyCube tools (e.g. cost-benefit calculator, methodology information, glossary). 1 More details about the synopses can be found in the Milestone M3.1 (Martensen 2016). So far, more than 500 studies have been analysed in the area of road risks with more than 3,500 risk estimates, summarised in more than 60 synopses (including approximately 10 meta-analyses), and the related measures analyses are in progress. This wealth of information will all be incorporated into the DSS and become its core outputs. The overall design of the DSS is finalised and is currently available, with the next stage being the DSS development, including all risk factors and measures. The DSS Pilot Operation will occur later in the project, followed by the final opening of the DSS, with continual updates from the end of the project onwards. The SafetyCube DSS is intended to have a life well beyond the end of the SafetyCube research project

    User-generated descriptions of individual images versus labels of groups 3 of images: A comparison using basic level theory

    Get PDF
    Although images are visual information sources with little or no text associated with them, users still tend to use text to describe images and formulate queries. This is because digital libraries and search engines provide mostly text query options and rely on text annotations for representation and retrieval of the semantic content of images. While the main focus of image research is on indexing and retrieval of individual images, the general topic of image browsing and indexing, and retrieval of groups of images has not been adequately investigated. Comparisons of descriptions of individual images as well as labels of groups of images supplied by users using cognitive models are scarce. This work fills this gap. Using the basic level theory as a framework, a comparison of the descriptions of individual images and labels assigned to groups of images by 180 participants in three studies found a marked difference in their level of abstraction. Results confirm assertions by previous researchers in LIS and other fields that groups of images are labeled using more superordinate level terms while individual image descriptions are mainly at the basic level. Implications for design of image browsing interfaces, taxonomies, thesauri, and similar tools are discussed

    Gamificação e cicloturismo sénior : design de uma app para a comunidade miOne

    Get PDF
    As the aging population continues to grow, there has been an increasing interest in the subject of gerontechnology. In the specific case of the digital game industry, senior citizens are becoming better consumers due to their purchasing power and free time, so it is important to focus on the role of games to their wellbeing and meet their needs and preferences. However, there is a general lack of information and products that address physical exercise in the interrelationship of cycling, tourism, games, gamification and senior citizens. The aim of this research is to understand the way gamification interventions can motivate senior citizens to adhere to cyclo-tourism. This dissertation reports on the use of the Development Research Method, deploying a broad array of methods, including focus groups, eye-tracking and interviews. A total of 46 participants (7 focus group participants, 8 participants in eye-tracking and 31 cyclists’ interviewees) were involved in this research. Based on the literature review, related work and the insights from each method, a cyclo-tourism digital app entitled Jizo was co-designed and prototyped. Findings indicate that certain gamification techniques and elements can trigger senior citizens’ motivations towards cyclo-tourism, being essential integrative parts of a digital app in this context. The elements highlighted were social relationships, progression, challenges, competition, feedback and rewards, having an important role in pre-, in loco and post- experience. These data support the view on gamification capability to motivate senior cyclo-tourism.Com o contĂ­nuo crescimento do envelhecimento da população, tem havido um interesse progressivo na ĂĄrea da gerontecnologia. No caso especĂ­fico da indĂșstria dos jogos digitais, os cidadĂŁos seniores fazem parte de um grupo de consumidores com poder de compra e tempo livre, pelo que Ă© essencial compreender o papel dos jogos digitais no seu bem-estar e atender Ă s suas necessidades e preferĂȘncias. No entanto, continua a prevalecer uma falta de informação e de produtos que abordam o exercĂ­cio fĂ­sico nas inter-relaçÔes entre o ciclismo, turismo, jogos, gamificação e cidadĂŁos seniores. O objetivo desta investigação Ă© compreender o uso de estratĂ©gias de gamificação para motivar os cidadĂŁos seniores a aderirem ao cicloturismo. Esta dissertação reporta a utilização do MĂ©todo de Investigação de Desenvolvimento, tendo como base os seguintes mĂ©todos: grupos de discussĂŁo, eye-tracking e entrevistas. Um total de 46 participantes (7 participantes de grupos de discussĂŁo, 8 participantes de eye-tracking e 31 ciclistas entrevistados) foram envolvidos nesta investigação. ApĂłs a revisĂŁo da literatura, trabalho relacionado, e os resultados obtidos de cada mĂ©todo, procedeu-se ao co-design e prototipagem uma app de cicloturismo designada Jizo. Os resultados indicam que certas tĂ©cnicas e elementos da gamificação podem desencadear as motivaçÔes dos cidadĂŁos seniores para o cicloturismo, alĂ©m de serem partes essenciais e integrantes de um aplicativo deste contexto. Os elementos destacados foram as relaçÔes sociais, progressĂŁo, desafios, competição, feedback e recompensas, na medida em que eles tĂȘm um papel importante na prĂ©, in loco e na pĂłs-experiĂȘncia. Estes dados suportam a ideia da capacidade da gamificação para motivar o cicloturismo sĂ©nior.Mestrado em Comunicação MultimĂ©di
    • 

    corecore