470 research outputs found

    Disease Name Extraction from Clinical Text Using Conditional Random Fields

    Get PDF
    The aim of the research done in this thesis was to extract disease and disorder names from clinical texts. We utilized Conditional Random Fields (CRF) as the main method to label diseases and disorders in clinical sentences. We used some other tools such as MetaMap and Stanford Core NLP tool to extract some crucial features. MetaMap tool was used to identify names of diseases/disorders that are already in UMLS Metathesaurus. Some other important features such as lemmatized versions of words, and POS tags were extracted using the Stanford Core NLP tool. Some more features were extracted directly from UMLS Metathesaurus, including semantic types of words. We participated in the SemEval 2014 competition\u27s Task 7 and used its provided data to train and evaluate our system. Training data contained 199 clinical texts, development data contained 99 clinical texts, and the test data contained 133 clinical texts, these included discharge summaries, echocardiogram, radiology, and ECG reports. We obtained competitive results on the disease/disorder name extraction task. We found through ablation study that while all features contributed, MetaMap matches, POS tags, and previous and next words were the most effective features

    Enhanced computer assisted detection of polyps in CT colonography

    Get PDF
    This thesis presents a novel technique for automatically detecting colorectal polyps in computed tomography colonography (CTC). The objective of the documented computer assisted diagnosis (CAD) technique is to deal with the issue of false positive detections without adversely affecting polyp detection sensitivity. The thesis begins with an overview of CTC and a review of the associated research areas, with particular attention given to CAD-CTC. This review identifies excessive false positive detections as a common problem associated with current CAD-CTC techniques. Addressing this problem constitutes the major contribution of this thesis. The documented CAD-CTC technique is trained with, and evaluated using, a series of clinical CTC data sets These data sets contain polyps with a range of different sizes and morphologies. The results presented m this thesis indicate the validity of the developed CAD-CTC technique and demonstrate its effectiveness m accurately detecting colorectal polyps while significantly reducing the number of false positive detections

    Towards Interoperability in E-health Systems: a three-dimensional approach based on standards and semantics

    Get PDF
    Proceedings of: HEALTHINF 2009 (International Conference on Helath Informatics), Porto (Portugal), January 14-17, 2009, is part of BIOSTEC (Intemational Joint Conference on Biomedical Engineering Systems and Technologies)The interoperability problem in eHealth can only be addressed by mean of combining standards and technology. However, these alone do not suffice. An appropiate framework that articulates such combination is required. In this paper, we adopt a three-dimensional (information, conference and inference) approach for such framework, based on OWL as formal language for terminological and ontological health resources, SNOMED CT as lexical backbone for all such resources, and the standard CEN 13606 for representing EHRs. Based on tha framewok, we propose a novel form for creating and supporting networks of clinical terminologies. Additionally, we propose a number of software modules to semantically process and exploit EHRs, including NLP-based search and inference, wich can support medical applications in heterogeneous and distributed eHealth systems.This work has been funded as part of the Spanish nationally funded projects ISSE (FIT-350300-2007-75) and CISEP (FIT-350301-2007-18). We also acknowledge IST-2005-027595 EU project NeO

    Extracting diagnostic knowledge from MedLine Plus: a comparison between MetaMap and cTAKES Approaches

    Get PDF
    The development of diagnostic decision support systems (DDSS) requires having a reliable and consistent knowledge base about diseases and their symptoms, signs and diagnostic tests. Physicians are typically the source of this knowledge, but it is not always possible to obtain all the desired information from them. Other valuable sources are medical books and articles describing the diagnosis of diseases, but again, extracting this information is a hard and time-consuming task. In this paper we present the results of our research, in which we have used Web scraping, natural language processing techniques, a variety of publicly available sources of diagnostic knowledge and two widely known medical concept identifiers, MetaMap and cTAKES, to extract diagnostic criteria for infectious diseases from MedLine Plus articles. A performance comparison of MetaMap and cTAKES is also presented
    • …
    corecore