368 research outputs found

    Gated lateral silicon p-i-n junction photodiodes

    Get PDF
    Research in silicon photonics has recently seen a significant push to develop complete silicon-based optical components for optical communications. Silicon has shown its potential to overcome the bandwidth limitations of microprocessor interconnect, whereas, the silicon platform has already displayed the benefits of low manufacturing costs and CMOS compatibility. The work on “gated lateral silicon p-i-n junction photodiodes” has demonstrated the silicon potential, to detect optical radiations, compatibility to standard CMOS process flow and tuneable spectral response. The lateral structure of gated p-i-n junction photodiodes contributes to high responsivity to short wavelength radiations in these single and dual gate devices. The final objective of this work was to develop high responsivity, CMOS-compatible silicon photodiodes, where the spectral response can be modulated. The lateral p-i-n junction architecture led to high responsivity values, whereas, the MOS gate structure became the basis for tuneable spectral response. The MOS gate structure, made the devices appear as a transistor to the surrounding circuitry and the gate structure in dual gate devices can be used to modulate the spectral response of the device. Single gate devices showed higher responsivity values and comparatively high blue and ultraviolet (UV) response as compared to conventional photodiodes. Surface depletion region in these devices is utilized by placing a MOS gate structure and by patterning an integrated metal grating to detect polarized light. Single and dual gate devices with two variations were fabricated to characterise the device response. Novel lateral architecture of p-i-n junction photodiodes provides a surface depletion region. It is generally anticipated that photodetectors with surface depletion region might produce higher noise. In these devices the surface depletion region has a lateral continuation of gate dielectric which acts as a passivation layer and thus considerably reduced the noise. Physical device modelling studies were performed to verify the experimentally obtained results, which are provided in the relevant measurement chapters. In these devices the speed of operation is a compromise over the high responsivity, CMOS compatibility and tuneable spectral response

    Photodetectors

    Get PDF
    In this book some recent advances in development of photodetectors and photodetection systems for specific applications are included. In the first section of the book nine different types of photodetectors and their characteristics are presented. Next, some theoretical aspects and simulations are discussed. The last eight chapters are devoted to the development of photodetection systems for imaging, particle size analysis, transfers of time, measurement of vibrations, magnetic field, polarization of light, and particle energy. The book is addressed to students, engineers, and researchers working in the field of photonics and advanced technologies

    Gated lateral silicon p-i-n junction photodiodes

    Get PDF
    Research in silicon photonics has recently seen a significant push to develop complete silicon-based optical components for optical communications. Silicon has shown its potential to overcome the bandwidth limitations of microprocessor interconnect, whereas, the silicon platform has already displayed the benefits of low manufacturing costs and CMOS compatibility. The work on “gated lateral silicon p-i-n junction photodiodes” has demonstrated the silicon potential, to detect optical radiations, compatibility to standard CMOS process flow and tuneable spectral response. The lateral structure of gated p-i-n junction photodiodes contributes to high responsivity to short wavelength radiations in these single and dual gate devices. The final objective of this work was to develop high responsivity, CMOS-compatible silicon photodiodes, where the spectral response can be modulated. The lateral p-i-n junction architecture led to high responsivity values, whereas, the MOS gate structure became the basis for tuneable spectral response. The MOS gate structure, made the devices appear as a transistor to the surrounding circuitry and the gate structure in dual gate devices can be used to modulate the spectral response of the device. Single gate devices showed higher responsivity values and comparatively high blue and ultraviolet (UV) response as compared to conventional photodiodes. Surface depletion region in these devices is utilized by placing a MOS gate structure and by patterning an integrated metal grating to detect polarized light. Single and dual gate devices with two variations were fabricated to characterise the device response. Novel lateral architecture of p-i-n junction photodiodes provides a surface depletion region. It is generally anticipated that photodetectors with surface depletion region might produce higher noise. In these devices the surface depletion region has a lateral continuation of gate dielectric which acts as a passivation layer and thus considerably reduced the noise. Physical device modelling studies were performed to verify the experimentally obtained results, which are provided in the relevant measurement chapters. In these devices the speed of operation is a compromise over the high responsivity, CMOS compatibility and tuneable spectral response.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Publications of the Jet Propulsion Laboratory, 1979

    Get PDF
    This bibliography includes 1004 technical reports, released during calendar year 1979, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications; (2) articles published in the open literature; and (3) articles from the bimonthly Deep Space Network Progress Report. The publications are indexed by: (1) author, (2) subject, and (3) publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first listed) author. Unless designated otherwise, all publications listed are unclassified

    Center for Space Microelectronics Technology 1988-1989 technical report

    Get PDF
    The 1988 to 1989 Technical Report of the JPL Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center. Listed are 321 publications, 282 presentations, and 140 new technology reports and patents

    Conference on Charge-Coupled Device Technology and Applications

    Get PDF
    Papers were presented from the conference on charge coupled device technology and applications. The following topics were investigated: data processing; infrared; devices and testing; electron-in, x-ray, radiation; and applications. The emphasis was on the advances of mutual relevance and potential significance both to industry and NASA's current and future requirements in all fields of imaging, signal processing and memory

    Photonic Technology for Precision Metrology

    Get PDF
    Photonics has had a decisive influence on recent scientific and technological achievements. It includes aspects of photon generation and photon–matter interaction. Although it finds many applications in the whole optical range of the wavelengths, most solutions operate in the visible and infrared range. Since the invention of the laser, a source of highly coherent optical radiation, optical measurements have become the perfect tool for highly precise and accurate measurements. Such measurements have the additional advantages of requiring no contact and a fast rate suitable for in-process metrology. However, their extreme precision is ultimately limited by, e.g., the noise of both lasers and photodetectors. The Special Issue of the Applied Science is devoted to the cutting-edge uses of optical sources, detectors, and optoelectronics systems in numerous fields of science and technology (e.g., industry, environment, healthcare, telecommunication, security, and space). The aim is to provide detail on state-of-the-art photonic technology for precision metrology and identify future developmental directions. This issue focuses on metrology principles and measurement instrumentation in optical technology to solve challenging engineering problems

    Pixellated radiation detectors for scientific applications

    Get PDF
    The work in this thesis is focused on characterisation and evaluation of two classes of science grade imaging radiation detectors. The first class is Monolithic Active Pixel Sensors (MAPS). The advances in CMOS fabrication technologies over the last four decades allowed MAPS to compete with Charge-Coupled Devices (CCD) in many applications. The technology also provides relatively inexpensive ways to tailor design to suit specific application needs. It is important to understand performance capabilities of new sensor designs through characterisation and optimisation of readout parameters. In this work three MAPSs were characterised. The first one - HEPAPS4 - designed for charged particle detection, with the potential technology application in the vertex detector for the International Linear Collider. The noise of the sensor was measured to be 35±5 e, which agrees well with simulated data. The dark current was found to be 175 pA/cm2. The SNR performance for minimum ionising particles detection was demonstrated to be 40. The sensor was also evaluated for indirect detection of thermal and fast neutrons using lithium and polyethylene converters. The technology performed well in such an application with an estimated fast neutron detection efficiency of ~0.01%. The second sensor characterised – Vanilla MAPS – was designed to evaluate new techniques for fast readout, small noise and reduced image lag. The system was capable to readout 150 full frames (520x520 pixels) per second; the sensor showed 14±4 e noise and decreased image lag. The dark current was found to be ~50 pA/cm2. The back-thinned version of the sensor demonstrated dramatic improvement in quantum efficiency from 0% to 20% at 220 nm. The third device is parametric sensor eLeNA. It features 14 test structure designed to evaluated noise reduction architectures. The most promising structures showed temporal noise values as low as 6 e and 20 e fixed pattern noise. Medipix as an example of the second class of imaging detectors - hybrid pixel detectors - was evaluated in two applications. It was used as the core element of the ATLAS radiation background monitoring system. The sensors were covered with neutron converters, which extended the number of radiation types that can be detected. X-ray calibration was performed, showing excellent tolerance of all 18 devices characterised. Detection efficiencies were estimated to be ~1% for thermal and ~0.1% for fast neutrons. The second application of Medipix was mass spectrometry. The detector was place in the focal plane of a prototype mass spectrometer. 2D representation of data allowed focusing correction of the ion beam. The system was capable to detect ions in the range of 5-25 keV. The detector characterisation with broad range of ions (from Cu to Pb) showed very good abundance agreement with table data

    Pre-phase A: Development of a far-ultraviolet photometric- and spectroscopic-survey small-explorer experiment

    Get PDF
    We propose to perform a far ultraviolet photometric and spectroscopic survey covering the lambda lambda 1300-2000 band with a sensitivity comparable to that of the Palomar Sky Survey. This survey will proceed in three phases: an all-sky survey in three bands to 18-19.5(sup m), deep surveys of selected targets of interest in the same bands to 21-22(sup m), and a spectroscopic survey of 2 percent of the sky to 18(sup m) with a resolution of 3-20A. This mission, the Joint Ultraviolet Nightsky Observer (JUNO), can be performed by a Small-Explorer-class satellite
    • …
    corecore