207 research outputs found

    BioMEMS

    Get PDF
    As technological advancements widen the scope of applications for biomicroelectromechanical systems (BioMEMS or biomicrosystems), the field continues to have an impact on many aspects of life science operations and functionalities. Because BioMEMS research and development require the input of experts who use different technical languages and come from varying disciplines and backgrounds, scientists and students can avoid potential difficulties in communication and understanding only if they possess a skill set and understanding that enables them to work at the interface of engineering and biosciences. Keeping this duality in mind throughout, BioMEMS: Science and Engineering Perspectives supports and expedites the multidisciplinary learning involved in the development of biomicrosystems. Divided into nine chapters, it starts with a balanced introduction of biological, engineering, application, and commercialization aspects of the field. With a focus on molecules of biological interest, the book explores the building blocks of cells and viruses, as well as molecules that form the self-assembled monolayers (SAMs), linkers, and hydrogels used for making different surfaces biocompatible through functionalization. The book also discusses: Different materials and platforms used to develop biomicrosystems Various biological entities and pathogens (in ascending order of complexity) The multidisciplinary aspects of engineering bioactive surfaces Engineering perspectives, including methods of manufacturing bioactive surfaces and devices Microfluidics modeling and experimentation Device level implementation of BioMEMS concepts for different applications. Because BioMEMS is an application-driven field, the book also highlights the concepts of lab-on-a-chip (LOC) and micro total analysis system (ÎĽTAS), along with their pertinence to the emerging point-of-care (POC) and point-of-need (PON) applications

    HBCUs Research Conference agenda and abstracts

    Get PDF
    The purpose of this Historically Black Colleges and Universities (HBCUs) Research conference was to provide an opportunity for principal investigators and their students to present research progress reports. The abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Lewis Research Center to HBCUs. The conference generated extensive networking between students, principal investigators, Lewis technical monitors, and other Lewis researchers

    BioMEMS

    Get PDF
    As technological advancements widen the scope of applications for biomicroelectromechanical systems (BioMEMS or biomicrosystems), the field continues to have an impact on many aspects of life science operations and functionalities. Because BioMEMS research and development require the input of experts who use different technical languages and come from varying disciplines and backgrounds, scientists and students can avoid potential difficulties in communication and understanding only if they possess a skill set and understanding that enables them to work at the interface of engineering and biosciences. Keeping this duality in mind throughout, BioMEMS: Science and Engineering Perspectives supports and expedites the multidisciplinary learning involved in the development of biomicrosystems. Divided into nine chapters, it starts with a balanced introduction of biological, engineering, application, and commercialization aspects of the field. With a focus on molecules of biological interest, the book explores the building blocks of cells and viruses, as well as molecules that form the self-assembled monolayers (SAMs), linkers, and hydrogels used for making different surfaces biocompatible through functionalization. The book also discusses: Different materials and platforms used to develop biomicrosystems Various biological entities and pathogens (in ascending order of complexity) The multidisciplinary aspects of engineering bioactive surfaces Engineering perspectives, including methods of manufacturing bioactive surfaces and devices Microfluidics modeling and experimentation Device level implementation of BioMEMS concepts for different applications. Because BioMEMS is an application-driven field, the book also highlights the concepts of lab-on-a-chip (LOC) and micro total analysis system (ÎĽTAS), along with their pertinence to the emerging point-of-care (POC) and point-of-need (PON) applications

    Materials Characterization and Microelectronic Implementation of Metal-insulator Transition Materials and Phase Change Materials

    Get PDF
    Vanadium dioxide (VO2) is a metal-insulator transition (MIT) material, and germanium telluride (GeTe) is a phase change material (PCM), both of which undergo several orders of magnitude increase in electrical conductivity from room temperature to their transition temperatures. They are candidates for many important technologies, including ultra-fast electronic memory, optical switches and filters, and active layers in terahertz metamaterials, among others. The physical mechanisms causing the phase transitions in these materials are explained and investigated experimentally. These materials were incorporated into six types of microelectronic devices, which were designed, fabricated, and tested at the Air Force Institute of Technology (AFIT). Additionally, these materials were investigated by materials characterization methods spanning the majority of the electromagnetic spectrum. The results show a most suitable applicability to electronic radio frequency (RF) switches, terahertz (THz) modulators, and phase change random access memory (PCRAM). Simple RF switches had 2 dB insertion losses and 30 dB of isolation, THz transmittance modulation of up to 99.5%, and PCRAM cells with threshold electric fields of approximately 1 V/ m

    Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings of the workshop are presented. The mission of the conference was to transfer advanced technologies developed by the Federal government, its contractors, and other high-tech organizations to U.S. industries for their use in developing new or improved products and processes. Volume two presents papers on the following topics: materials science, robotics, test and measurement, advanced manufacturing, artificial intelligence, biotechnology, electronics, and software engineering

    A novel microfluidic enrichment technique for carbonylated proteins

    Get PDF
    Proteins are the building blocks of cells in living organisms, and are composed of amino acids. The expression of proteins is regulated by the processes of transcription and translation. Proteins undergo post-translational modifications in order to dictate their role physiologically within a cell. Not all post-translational modifications are beneficial for the protein or the cell. One type of post-translational modification, called carbonylation, irreversibly places a carbonyl group onto an amino acid residue, most commonly proline, lysine, arginine, and threonine. This modification can have severe consequences physiologically, including loss of solubility, loss of function, and protein aggregation. Carbonylated proteins have commonly been used as a marker of oxidative stress. Oxidative stress has been suggested to play a role in many human disease states, such as Alzheimer\u27s Disease, Amyotrophic Lateral Sclerosis, Parkinson\u27s Disease, inflammatory diseases, and others. Evidence shows oxidative stress to be a contributing factor in the progression of aging. Therefore, markers of oxidative stress, such as carbonylated proteins, can provide key information for the development of valuable therapeutics for these conditions. However, they are found in low abundance in samples and require enrichment prior to proteomic-based studies. Currently, affinity chromatography is the chosen method for enriching carbonylated proteins in a sample. However, the technique has significant drawbacks, including a large sample requirement, a large time requirement, the need for derivatization, and a high dilution of the sample post elution. This dissertation introduces a microfluidic enrichment technique for carbonylated proteins. The technique involves the surface modification of a polymer microchip for selective capture of carbonylated proteins. The surface chemistry is verified using different analytical techniques. Specificity of the target molecule\u27s capture is demonstrated using a native protein. The capture conditions are optimized experimentally by studying four unique variables. Lastly, theoretical modeling is performed to determine the conditions that would lead to the technique\u27s failure. It is seen that the technique can selectively capture target proteins from a flowing solution, even in the presence of an unoxidized protein. Protein capture is most dependent upon flow rate and crosslinker concentration. The flow rates required to break the bonds formed between an oxidized protein and the crosslinker exceeds feasible levels within a microfluidic channel. The microfluidic enrichment technique provides a promising alternative to the current gold standard of avidin affinity chromatography. The device has promise as a possible protein biomarker discovery tool in the search for therapeutic targets in human disease states where oxidative stress has been implicated

    Laser Patterned N-doped Carbon: Preparation, Functionalization and Selective Chemical Sensors

    Get PDF
    Die kürzliche globale COVID-19-Pandemie hat deutlich gezeigt, dass hohe medizinische Kosten eine große Herausforderung für unser Gesundheitssystem darstellen. Daher besteht eine wachsende Nachfrage nach personalisierten tragbaren Geräten zur kontinuierlichen Überwachung des Gesundheitszustands von Menschen durch nicht-invasive Erfassung physiologischer Signale. Diese Dissertation fasst die Forschung zur Laserkarbonisierung als Werkzeug für die Synthese flexibler Gassensoren zusammen und präsentiert die Arbeit in vier Teilen. Der erste Teil stellt ein integriertes zweistufiges Verfahren zur Herstellung von laserstrukturiertem (Stickstoff-dotiertem) Kohlenstoff (LP-NC) ausgehend von molekularen Vorstufen vor. Der zweite Teil demonstriert die Herstellung eines flexiblen Sensors für die Kohlendioxid Erfassung basierend auf der Laserumwandlung einer Adenin-basierten Primärtinte. Die unidirektionale Energieeinwirkung kombiniert mit der tiefenabhängigen Abschwächung des Laserstrahls ergibt eine neuartige geschichtete Sensorheterostruktur mit porösen Transducer- und aktiven Sensorschichten. Dieser auf molekularen Vorläufern basierende Laserkarbonisierungsprozess ermöglicht eine selektive Modifikation der Eigenschaften von gedruckten Kohlenstoffmaterialien. Im dritten Teil wird gezeigt, dass die Imprägnierung von LP-NC mit Molybdäncarbid Nanopartikeln die Ladungsträgerdichte verändert, was wiederum die Empfindlichkeit von LP-NC gegenüber gasförmigen Analyten erhöht. Der letzte Teil erläutert, dass die Leitfähigkeit und die Oberflächeneigenschaften von LP-NC verändert werden können, indem der Originaltinte unterschiedliche Konzentrationen von Zinknitrat zugesetzt werden, um die selektiven Elemente des Sensormaterials zu verändern. Basierend auf diesen Faktoren zeigte die hergestellte LP-NC-basierte Sensorplattform in dieser Studie eine hohe Empfindlichkeit und Selektivität für verschiedene flüchtige organische Verbindungen.The recent global COVID-19 pandemic clearly displayed that the high costs of medical care on top of an aging population bring great challenges to our health systems. As a result, the demand for personalized wearable devices to continuously monitor the health status of individuals by non-invasive detection of physiological signals, thereby providing sufficient information for health monitoring and even preliminary medical diagnosis, is growing. This dissertation summarizes my research on laser-carbonization as a tool for the synthesis of functional materials for flexible gas sensors. The whole work is divided into four parts. The first part presents an integrated two-step approach starting from molecular precursor to prepare laser-patterned (nitrogen-doped) carbon (LP-NC). The second part shows the fabrication of a flexible LP-NC sensor architecture for room-temperature sensing of carbon dioxide via laser conversion of an adenine-based primary ink. By the unidirectional energy impact in conjunction with depth-dependent attenuation of the laser beam, a novel layered sensor heterostructure with a porous transducer and an active sensor layer is formed. This molecular precursor-based laser carbonization method enables the modification of printed carbon materials. In the third part, it is shown that impregnation of LP-NC with molybdenum carbide nanoparticle alters the charge carrier density, which, in turn, increases the sensitivity of LP-NC towards gaseous analytes. The last part explains that the electrical conductivity and surface properties of LP-NC can be modified by adding different concentrations of zinc nitrate into the primary ink to add selectivity elements to the sensor materials. Based on these factors, the LP-NC-based sensor platforms prepared in this study exhibited high sensitivity and selectivity for different volatile organic compounds

    Colorimetric nanodiagnostics for Point-Of-Care applications: detection of salivary biomarkers and environmental contaminants

    Get PDF
    Nanomaterials offer many unique opportunities for the development of effective and rapid point-of-care (POC) devices to be exploited in many fields, including early diagnosis, health monitoring, and pollutant detection. In particular, gold nanoparticles (AuNPs) exhibit tunable catalytic and plasmonic properties, which are key enabling tools to design and develop innovative detection schemes in several sensing applications. The aim of this PhD project was the development of AuNPs-based colorimetric POCs to detect heavy metal ion contaminations and specific biomarkers in non-invasive biological fluids. First, we developed a novel strategy that exploits the combination of the plasmonic and catalytic properties of AuNPs to achieve an ultrafast (1 min) and sensitive colorimetric sensor for highly toxic methyl mercury. Taking advantage of the AuNP nanocatalyst to promote the rapid reduction of methyl mercury with nucleation on the particle surface and consequent aggregation-induced plasmonic shift, we were able to detect by naked-eye mercury contaminations as low as 20 ppb, which is relevant for food contaminations or biological fluid assessment. Moreover, an innovative and versatile platform, based on multibranched AuNPs, was developed for the detection of salivary biomarkers. Coupling etching and growing reactions in a reshaping process onto the nanostars surface, we created a customizable platform with boosted color change readout for fast detection of salivary glucose at low concentrations. The nanosensor performance was validated on samples from patients with diabetes, proving its potential as a novel non-invasive tool for frequent monitoring of glycaemia. As side project we also investigated the platinum nanoparticles enzymatic activity in a colorimetric sensor for inorganic mercury contamination monitoring in water sources

    Design and optimization of ultrathin silicon field effect transistor's for sensitive, electronic-based detection of biological analytes

    Get PDF
    Noncommunicable diseases (NCD) are currently the leading cause of death worldwide. Over 57 million deaths occur globally each year, with close to 36 million of them attributed to NCD’s, and 80% of those in low and middle income countries. Most of these were due to such chronic illnesses as cancer, cardiovascular disease, diabetes, and lung disease. Moreover, the prevalence of these diseases is rising fastest in low-income regions which have little resources to combat these large, yet avoidable costs. In particular, over 1.6 million cases of cancer are caused each year in the United States, with nearly 600,000 of these cases being fatal. Cancer is an uncontrolled growth and spread of abnormal cells in the body, and unfortunately, can exist in many different cell types. The complexity in the causes of cancer has made it tougher to diagnose since several factors may weight into its prevalence such as: genetic factors, lifestyle factors, certain types of infections, and different environmental exposures. As a result, the protocols for the most cost-effective intervention are available across four main approaches to cancer prevention and control: primary prevention, early detection, treatment, and palliative care. Early diagnosis based on awareness of early signs and symptoms and, if affordable, population-based screening improves survival, particularly for breast, cervical, colorectal, skin and oral cancers. If primary prevention of cancer fails, secondary prevention (early detection) may be the difference between irreversible spread of a malignant cancer, and the patient’s survival. Early detection commonly refers to the diagnosis of a disease before individuals show obvious signs or symptoms of illness. With cancer, RNA and protein biomarkers of cells are currently assayed to determine their serums level and if they have deviated from the normal ranges. However, these assays commonly require large centralized lab facilities, frequent monitoring during treatment, and expensive equipment and/or supplies. This has led to point-of-care diagnostics becoming a $16 billion global market, aimed at miniaturizing technology and making it cost-effective for individual patient testing and treatment without the use of centralized lab facilities. A main point-of-care testing platform being pursued utilizes Complementary Metal Oxide Semiconductor (CMOS) technology. CMOS-based products can enable clinical tests to be conducted in a fast, simple, safe, and reliable manner, with improved sensitivities. Moreover, CMOS products offer portability and low power consumption, in large part due to the explosion in the semiconductor and communications markets. Silicon nanowires are of great interest for point-of-care testing as they are a CMOS compatible structure, require the use of no labels, and are highly sensitive to the binding of molecules to their surfaces. This is due to the large surface area to volume ratio afforded to nanowires. Moreover, arrays of silicon nanowires have demonstrated multiplexed, label-free sensing of cancer markers from undiluted serum samples. However, the research going into CMOS for point-of-care is in its infancy compared to other optical (surface plasmon resonance, fluorescence) or electrochemical methods (glucose sensors), although the technology for CMOS has been around for decades. Thus, the protocols for optimization of the sensors and their bioconjugation have not matured to the point DNA microarrays and ELISA’s have. The protocols for creation of a dependable silicon nanowire biosensor revolve around three main aspects: semiconductor processing, device functionalization, and choice of analytes. In this dissertation, I discuss our efforts to create a stable, silicon nanowire based sensor using CMOS compatible techniques and optimization processes. Moreover, I talk about our efforts into creating a device functionalization protocol using monofunctional silanes which affords the best sensitivity and specify for an electronic based biosensor. Finally, I discuss our look towards the future in silicon nanowires by using high-k dielectrics in our fabrication process, as well as an alternative monolayer deposition method which utilizes sub-nanometer thickness poly-l-lysine monolayers, for sensing clinically relevant targets of microRNA. Using a special type of silane, called a monofunctional silane, and a vapor based deposition method, we were able to achieve sub-nanometer levels functional monolayers on thermally oxidized silicon surfaces. We employed a variety of characterization techniques (XPS, AFM, ellipsometry) to determine the densities of the monolayer, uniformity, topography, and their point of saturation. Furthermore, we demonstrate this method’s applicability to biosensors by using it to functionalize substrates for silicon nanowires, gold nanoparticles, and protein microarrays. In tandem with this work, we constructed a “top down” silicon nanowire processing protocol which yielded nanowires capable of long-term, stable measurements in aqueous solutions. The combination of anneals, dry etching, and final wet etching gave mV standard deviations in device threshold characteristics. This protocol combined with the monolayer protocol above allowed an in-depth characterization of the pH sensitivity of bare devices, ones with silanes, and ones conjugated with proteins to be determined. Similarly, different oxide thicknesses and their effect on device sensitivity for proteins were also explored. Using a bunch of different linker chemistries and characterizing their conjugation of antibodies through fluorescence and the device, allowed for a chemistry to be chosen which was used to sense mouse immunoglobulins in pg/mL levels with high specificity. Finally, we take the fabrication of nanowires to the next level by using high-k dielectrics (HfO2) as the gate insulator. We deposit HfO2 through ALD (atomic layer deposition) and optimize the anneals to provide nanowires with ~200mV subthreshold slopes, sub-mV threshold deviations, and sub nanoampere gate leakages. All these characteristics exceed the processes for thermal oxide gated silicon nanowires, some by an order of magnitude. Since HfO2 is a high-k material, reaction of silanes and its density were unknown, but high-k materials do form stable amide linkages. Thus, we optimized a wet deposition of small molecular weight poly-l-lysine to provide a sub-nm conjugation layer for proteins and nucleotides by using AFM, XPS, and ellipsometry to understand the process. Using these combined protocols, we were able to conjugate probe oligonucleotides to surfaces and detect target microRNA’s down to 100fM concentrations, with a dynamic range over 4 orders of magnitude. With these ranges well within the clinical levels (1pM-100pM), we believe silicon nanowires have the capability to become a well-established point-of-care diagnostic platform
    • …
    corecore